
 1

 Gailbot

 Backend
 Technical Design Document

 Version 0.0.2

 2

 Table of Contents

 1 DESIGN METHOD AND STANDARDS ... 3
 1.1 Design Method .. 3
 1.2 Documentation Overview .. 3

 2. ARCHITECTURE ... 4
 2.1 High-Level View of GailBot Backend .. 4
 2.2 Backend Architecture Diagram .. 5
 2.3 Built-in Plugin Suite .. 5

 3 FILE ORGANIZATION .. 7
 3.1 Files and Directories Descriptions ... 7
 3.2 File Organization Tree ... 8
 3. 2 Driver Files ... 15

 4 CLASSES ... 17
 4.1 Classes in Interface GUI .. 17
 4.2 Classes in PluginSuite ... 75

 5 GAILBOT API ... 81
 5.1 Methods ... 82
 5.2 Plugin Suite .. 87

 3

 1 DESIGN METHOD AND STANDARDS

 1.1 Design Method
 The visual design of the GailBot Graphical User Interface was prototyped by Eva Denman in
 Fall 2020. Her design specification is linked here and her prototype is linked here .

 We deviate from this prototype in several instances in which the current GailBot backend or the
 specifications for the GailBot frontend do not line up with the state of GailBot at the time at
 which the prototype was designed. This can be seen in the details of the file table and dropdown
 widget, the design and existence of “cancel” and “quit” buttons, and a few other negligible
 design choices.

 As well as deviations from the prototype, there are a few pages and components whose design
 was not specified in the design documentation. Each instance of the tab pop-up widget was
 designed from scratch, such as the create profile pop-up and the choose file/folder pop-up, as
 well as the system settings page and the installation window.

 The design is completely dynamic in that it facilitates future change and development of the
 GailBot backend or the frontend specifications. The GailBot backend is expected to continue
 developing after the preliminary frontend is finished; therefore, the frontend has been designed
 with this future change in mind and each component contains public functions for future
 developers to easily access and modify.

 1.2 Documentation Overview
 “Architecture” section - provides high-level descriptive and visual view of the GailBot backend
 architecture

 “File Organization” section - outlines the hierarchical structure of the GailBot backend source
 code with descriptions of their purposes and functionality

 “Classes” section - outlines in detail all modules that support the GailBot backend

 “Driver Files” section - provides description of driver code for the GailBot backend

https://docs.google.com/document/d/1N8rcYsQgI28mpFs_s1dIcXjyWCOnbeWY0WQm06YUTn4/edit?usp=sharing
https://cpfxjc.axshare.com/#id=2bs1ho&p=post-transcription_settings&g=1

 4

 2. ARCHITECTURE
 2.1 High-Level View of GailBot Backend
 Below is a high-level description of the Gailbot backend.

 Gailbot runs by:

 1) Receiving source files and user preferences
 2) Uploading source audio data to an speech-to-text (STT) engine
 3) Transcribing the audio data and receiving utterance data from the engine
 4) Analyzing this data in processes specified by plugins
 5) Returning the analysis and transcription files to user

 The first and last steps are controller logic, while all other steps are model logic.

 This process happens simultaneously with different files on multiple threads, so that the program
 can operate faster. Gailbot creates logs to record the preferences set, actions, and success of
 intended actions. Log objects initialized in log classes are updated throughout all of Gailbot
 operations.

 Gailbot’s data, throughout the transcription process, will either be stored in:

 - In the engine’s database
 - In a hidden temporary folder, local to the user, during intermediate steps
 - In a visible folder, local to the user and location specified by the user, where the

 resulting files will be pushed

 When running Gailbot, the user creates a profile of settings. Here, they can choose the engine
 (google, watson, whisper) they want to use to perform their transcription and what plugins they
 want to use to perform their analysis. They can choose to include/ignore Plugins built into the
 Gailbot app, or incorporate their own plugins. Within hidden local temporary folders, user
 preference data is stored, as user choices are relevant for how the analysis and transcription will
 be executed later. Gailbot has classes for managing and modifying these user profiles.

 First, the gui directs the untouched source files to its temporary hidden local space, with classes
 to access files in this workspace. When settings and sources have been saved, the gui begins its
 two primary functions: transcription and analysis.

 The gui connects the external engine to the source files, which creates a database of what words
 are said and when. Gailbot saves these snippets, or “utterances”, as a dictionary in the
 temporary workspace and abstracts accessing utterances using classes.

 The gui then imports logic from plugins to analyze this data based on specifications from each
 plugin. The specifics of each plugin dictates what outputs Gailbot will have. The Gailbot gui is
 modular to adapt to any plugin, made by Gailbot developers or otherwise, as long as they
 include algorithms to interpret utterance data and methods to create analysis outputs. The user
 has the option to apply multiple plugins. When a plugin is specified and used, the gui interacts
 with it through a plugin object initialized through an adapter class. It then has a broader class
 that manages all plugins that the user chooses to apply. The external plugin provides the gui data

 5

 for configuration, which allows the gui to manage and run plugins within the plugin suite, so
 that plugins with dependencies on other plugins can run in the correct order.

 2.2 Backend Architecture Diagram

 As shown in the diagram, the GailBot backend begins with user-provided input source files along
 with signals from the GailBot interface for configuring profile settings and plugins. Profiles
 configured using settings data are applied to source inputs for transcription. Transcription
 engines return utterance data for analysis by plugin suites.

 2.3 Built-in Plugin Suite
 The built-in Gailbot plugin suite is discussed as an example of how a plugin may interact with
 the gui to provide analysis files to the user.

 In the built-in Gailbot plugin suite, a binary search tree is built based on words within the
 utterance data, initially sorted by the beginning spoken time of the word. A “word” class defines
 data stored for each node, while a “nodes” class defines how words are connected to each other
 in a binary search tree with a left and right field. With this tree, the following layers of analysis
 are performed.

 First, the tree is traversed to create dictionaries with keys being the speaker, and the value being
 the nodes. This provides what is referred to as “speaker data”.

 6

 Next, the tree is traversed, and analyzed for paralinguistic features of talk. When a paralinguistic
 feature is identified through comparing fields within nodes of the original binary search tree, a
 new node is added representing that feature. The updated tree is then traversed, and Python
 dictionaries, which hold labels (ex: speaker, type of paralinguistic feature) as a key and nodes as
 a value are used to hold this additional paralinguistic data. These dictionaries answer the users
 questions such as: what word is spoken by which speaker, what words from speaker A were
 spoken at the same time as speaker B, at what times do pauses occur, etc.

 As different plugins are run, the “dependency_ouput” object is passed through as an argument.
 It stores the intermediate and final results of the pipeline, by storing a dictionary representing
 the tree and dictionaries storing conversation, speaker, and utterance level analysis. The speaker
 dictionary includes the utterance data sorted by speaker, while the conversation dictionary stores
 all of the utterance data for a conversation together. The word dictionary stores which word is
 spoken and at what point. This “dependency_output” object is passed between different plugins
 in the built-in plugin suite to ensure that dependent plugins have data from past plugins. The
 different dictionaries within “dependency_output” result in the analysis files, and are formatted
 based on specifications in the plugin suite code. Files giving users the analysis on different
 conversation levels come from the conversation map, speaker map, and utterance map
 dictionaries. The final tree is traversed to provide the transcription with added linguistic
 markers.

 In the init function for the built-in plugin suite, the dependencies needed by each plugin are
 stored, and these dependencies are compiled into their own file, so that the user can see which
 plugins rely on one another.

 Both the analysis outputs and transcription outputs are returned to a user as a folder location
 they specify, and whose file path is stored in the core of Gailbot. This folder has a subfolder
 called “analysis”, and a subfolder called “raw”.

 In the gui, “pipeline” refers to the sections of logic dedicated to wrapping the plugin. It provides
 a link between the results from the engine’s transcription, and the analysis and transcription files
 returned to the user. Plugins themselves handle the formatting of their outputs.

 The “analysis” folder includes the formatted analysis data. Individual plugins specify how their
 data should be formatted in an output file. It also includes a transcription with the linguistic
 markers specified by the plugins, by traversing and formatting the tree created with the plugin’s
 algorithm.

 The “raw” folder contains the source files unchanged, and also a transcription of the source file
 from the specified engine, without linguistic markers from the specified plugins.

 7

 3 FILE ORGANIZATION

 3.1 Files and Directories Descriptions
 The code behind the GailBot GUI is organized as follows:

 At the top level of the “environment setup” folder, files are included pertaining to installation of
 the GailBot app. These files are environment.yaml file and requirements.txt. These set the
 required dependencies related to the running of GailBot. There is also a file called setup.sh,
 which is a shell script to create an environment if the user chooses not to set up an Anaconda
 environment. Within this folder, there are two subfolders: “interface” and “plugin_suite”. The
 plugin_suite folder is separated from the rest of the project, as plugins can be developed
 externally by GailBot users and incorporated seamlessly into the app. Therefore, all plugin
 implementation can be abstracted from the rest of the code.

 The interface folder contains two subfolders: “gui” and “install”. The install subfolder handles
 the packages of required dependencies. The gui folder includes the main logic for Gailbot,
 including the interface’s model, view, and controller components, as Gailbot utilizes the Model
 View Controller (MVC) framework.

 The gui folder contains 8 subfolders and two Python files.

 The two Python files are Hooks.py , which includes additional extensions for PyInstaller, and
 App.py , which includes the main driver function to run the app.

 The “asset” folder contains the graphics used in the frontend of Gailbot.

 The “config_backend ” folder contains the .toml files that allows us to extract and store values
 needed by the backend of Gailbot, for easy updates and access.

 The “config_frontend” folder contains the .toml files related to the frontend of Gailbot. Allows
 us to extract and store values needed by the frontend of Gailbot, for easy updates and access.

 The “controller” folder contains functionality related to the interaction between the model
 component , the view component , and the GailBot background.

 The “ gailbot ” folder contains the current implementation of the GailBot backend. This is only
 tangentially related to the processes designed in the GailBot frontend, and thus can be swapped
 out with later versions of the backend as necessary.

 The “gb logger” folder contains functionality pertaining to the initialization and formatting of
 Gailbot’s log files.

 The “test” folder contains unit testing for the interface’s model, view, and controller.

 The “view” folder contains all information pertaining to the visual components of the GUI. Our
 implementation divides this into three folders: pages, widgets, and components.

 8

 3.2 File Organization Tree
 ● interface/gui - The overarching folder for all of Gailbot

 ○ asset - All of the image files used for Gailbot’s front end implementation
 ■ dark - All of the image files for dark mode
 ■ font - The two fonts used in Gailbot
 ■ light - All of the image files for light mode

 ○ config_backend
 ■ engines

 ● google/google_config.toml - Config file for the Google
 transcription

 ● watson/watson_config.toml - Config file for the Watson
 transcription

 ● whisper/whisper_config.toml - Config file for the Whisper
 transcription

 ■ plugin/valid_plugin.toml - The template .toml file for a plugin
 ■ services

 ● default_setting.toml - The .toml file for the default settings
 ● format.md - A file detailing the overview of the result directory

 output of Gailbot
 ● service.toml - The .toml file for the extensions, engines, and

 directories of Gailbot
 ■ settings/default.toml - The template .toml file for the settings for Gailbot
 ■ toplevel

 ● ws_config.toml - The workspace .toml file for the root of the
 workspace and the necessary directories

 ● ws_root.toml - The default root for the workspace.
 ■ util/log.toml - The .toml file for where the
 ■ __init__.py - Imports the necessary files
 ■ paths.toml - Contains path configuration files

 ○ config_frontend
 ■ setting

 ● defaultSetting.toml - Contains the default settings for font size,
 color mode, and log auto deletion time

 ● profileValues.toml - Contains all of the predefined profile setting
 values

 ● systemSettingValues.toml - Duplicate of defaultSetting.toml
 ■ style

 ● backupStyle - Contains backup of style and color information
 ○ colorBlueDark.toml - Style for dark blue
 ○ colorDarkOrig.toml - Original dark mode colors
 ○ colorLightOrig.toml - Original light mode colors

 ● color
 ○ color.toml - Duplicate style for the light mode colors
 ○ colorDark.toml - Style for the dark mode colors
 ○ colorLight.toml - Style for the light mode colors

 ● font

 9

 ○ fontFamily.toml - .toml file for the main fonts used
 ○ fontSize.toml - .toml file for the default font size
 ○ fontSizeLarge.toml - Font sizes for large font
 ○ fontSizeMedium.toml - Font sizes for medium font
 ○ fontSizeSmall.toml - Font sizes for small font

 ● dimension.toml - Dimensions of all of the windows
 ■ text

 ● forms.toml - Text used for when files are being inputted
 ● link.toml - Links to all of the HiLab files

 ■ workspace
 ● fileManagement.toml - Includes the upload and output directories
 ● logManagement.toml - The time to auto delete. Defaults to 30
 ● userRoot.toml - The default root for Gailbot
 ● wsStructure.toml - The structure of the workspace

 ■ __init__.py - Files needed for import
 ■ ConfigPath - Provides a data class to store all the paths to configuration
 ■ configpath.toml - A path to config_frontend files with backend data

 ○ controller
 ■ mvController

 ● organizer
 ○ __init__.py
 ○ DataOrganizer.py - Includes the DataOrganizer class
 ○ EngineOrganizer.py - Includes the EngineOrganizer

 class
 ○ FileOrganizer.py - Includes the FileDict , Signals , and

 FileOrganizer class, the latter of which is a subclass of
 DataOrganizer

 ■ FileDict implements the scheme of file data, while
 Signals contains pyqtSignal to support
 communication between the plugin database and
 view

 ○ PluginOrganizer.py - Contains the Signals and
 PluginOrganizer class, the latter of which is a subclass of
 DataOrganizer

 ■ Signals here contains pyqtSignal to support
 communication between the plugin database and
 view

 ○ ProfileOrganizer.py - Contains the ProfileOrganizer
 subclass of DataOrganizer

 ● __init__.py
 ● MVController.py - Includes the MVController class

 ■ transcribeController
 ● __init__.py
 ● TranscribeController.py - Contains the Signal ,

 TranscribeController , and GBWorker classes
 ●

 10

 ■ util
 ● __init__.py - Imports the necessary files.
 ● Error.py - Includes the Error class, which has macros for all of

 the errors than can appear throughout Gailbot
 ● io.py - Determines the paths of all files in the directory. Includes a

 variety of path and directory related functions.
 ■ __init__.py
 ■ Controller.py - Includes the Signal and Controller classes

 ○ gailbot
 ■ configs

 ● confs
 ○ paths.py - Contains the ConfigPath class, which includes

 the load paths to engine configuration files
 ● interfaces

 ○ config
 ■ ws_config.py - Contains the OutputFolder ,

 TemporaryFolder , FileExtensions , EngineWS,
 GailBotData , and WorkSpaceConfig classes

 ● The other classes initialize the root and
 workspace names, as well as other
 miscellaneous data

 ○ Core
 ■ Engines

 ● Google.py - GoogleConfig class
 ● Watson.py - WatsonConfig class
 ● Whisper.py - WhisperConfig class

 ■ Setting
 ● Defaults.py - Default class

 ■ Util
 ● Logger.py - Logger class

 ○ Plugin
 ■ Pluginsuite.py - PLUGIN_CONFIG class

 ○ Services
 ■ Service.py - contains DirectoryName , Engines ,

 Thread , ServiceConfig , ProfileData , and
 DefaultSetting classes

 ● Each of these classes contains the names for
 the directories, engines, threads, services,
 profile data, and default settings respectively

 ■ Cores
 ● Engines

 ○ Google
 ■ Core.py - GoogleCore class
 ■ Google.py - Google class

 ○ Watson
 ■ Am.py - WatsonAMInterface class

 11

 ■ Codes.py - WatsonResourceCode class
 ■ Core.py - WatsonCore class
 ■ Lm.py - WatsonLMInterface class
 ■ Recognition_results.py - RecognitionResult class
 ■ Recognize_callback.py -

 CustomWatsonCallbacks class
 ■ Watson.py - Watson class

 ○ whisperEngine
 ■ Core.py - WhisperCore class
 ■ whisperEngine.py - WhisperEngine class

 ○ Engine.py - Engine class
 ○ EngineManager.py - EngineManager class
 ○ Exception.py - contains ERROR , ConnectionError ,

 TranscriptionError , APIKeyError , AudioFileError ,
 ModelCreateError , WatsonMethodExecutionError ,
 OutPutError , GetUttResultError classes

 ● Pipeline
 ○ Component.py - contains ComponentState ,

 ComponentResult , Component classes
 ○ Pipeline.py - contains DataStream , Pipeline classes

 ■ Datastream sets any data to None
 ● Utils

 ○ Download.py - functions
 ○ General.py - CMD_STATUS class
 ○ Logger.py - functions
 ○ Media.py - contains Stream , AudioStream ,

 VideoStream , AudioHandler , VideoHandler ,
 MediaHandler classes

 ○ Threads.py - contains TaskNotFoundException ,
 TaskNotFinishedException , TaskCancelException ,
 TaskCreateError , ThreadError , Status , and ThreadPool
 classes

 ■ Plugins
 ● Loader

 ○ Directoryloader.py - contains PluginDict , ConfDict ,
 MetaData , ConfModel , PluginDirectoryLoader ,
 PluginTOMLLoader , PluginDictLoader classes

 ■ The first three classes declare the dictionary type for
 the individual plugin, the dictionary type for the
 plugin suite configuration, the metadata of version
 and author names, and the dictionary type

 ○ pluginLoader . py - PluginLoader class
 ○ urlloader.py - contains UrlLoader , PluginURLLoader ,

 GitHubURLLoader , S3ZipLoader , S3BucketLoader
 classes

 12

 ● Manager.py - contains ERROR , DuplicatePlugin ,
 PluginManager classes

 ○ ERROR lists all of the possible error messages.
 DuplicatePlugin returns the error message if you load an
 existing plugin

 ● Plugin.py - contains Utt , Methods , Plugin classes
 ○ Utt initializes the start and end times as well as the speaker

 and text. Methods is a wrapper that will be passed into a
 plugin

 ● Suite.py - contains PluginResult , MetaData , PluginComponent ,
 PluginSuite classes

 ○ PluginResult is a class containing the result of a
 component object. MetaData is the schema for base
 metadata

 ■ Services
 ● Converter

 ○ Payload
 ■ audioPayload.py - AudioPayload class
 ■ conversationDirectoryPayload.py -

 ConversationDirectoryPayload class
 ■ payloadObject.py - PayLoadStatus ,

 PayLoadObject class
 ■ transcribeDirPayload.py - TranscribeDirPayload

 class
 ■ videoPayload.py - VideoPayload class

 ○ Plugin
 ■ pluginMethod.py - UttObj , GBPluginMethods

 classes
 ○ Result

 ■ Analysis.py - AnalysisResultDict , AnalysisResult
 classes

 ■ Format.py - FormatResultDict , FormatResult
 classes

 ■ processingStatus.py - ProcessingStats class
 ■ resultInterface.py - ResultInterface class
 ■ Transcribe.py - UttDict , UttResult classes

 ○ Converter.py - Converter class
 ● Organizer

 ○ Settings
 ■ Interface

 ● engineSettingInterface.py -
 EngineSettingInterface class

 ● googleInterface.py - contains
 ValidateGoogle , Transcribe , Init ,
 GoogleInterface classes

http://transcribedirpayload/

 13

 ● pluginSettingsInterface.py -
 PluginSettingsInterface class

 ● watsonInterface.py - contains
 ValidateWatson , InitSetting ,
 TranscribeSetting , WatsonInterface
 classes

 ● whisperInterface.py - contains
 ValidateWhisper , Init , TranscribeSetting ,
 WhisperInterface classes

 ■ Objects
 ● engineObject.py - EngineSetObj class
 ● pluginObject.py - PluginSuiteSetObj class
 ● settingObject.py - contains SettingDict ,

 SettingObject classes
 ■ settingManager.py - contains

 ExistingSettingName , SettingManager classes
 ○ Source

 ■ Source_manager.py - SourceManager class
 ■ Source_object.py - SourceObject class

 ○ organizer.py - Organizer class
 ● Pipeline

 ○ Components
 ■ analysisComponent.py - contains PluginError ,

 AnalysisComponent classes
 ■ formatComponent.py - FormatComponent class
 ■ Progress.py - ProgressMessage class
 ■ transcribeComponent.py - contains

 InvalidEngineError , TranscribeComponent class
 ○ Pipeline.py - PipelineService class

 ● Controller.py - ServiceController class
 ■ Workspace

 ● Manager.py - WorkspaceManager class
 ■ Api.py - GailBot class

 ○ gbLogger
 ■ Logger.py - contains its own function and CustomFileFormatter ,

 ConsoleFormatter , StatusBarFormatter , ConsoleHandler ,
 StatusBarHandler classes

 ○ tests
 ■ Test files, no classes

 ○ view
 ■ Front end

 ○ App.py
 ■ Driver for the app

 ○ Hooks.py
 ■ Manages importations needed

 ● interface/install - The folder with files pertaining to installation

 14

 ○ hook/ hook-gailbot.py - Contains the names of required packages and their
 metadata

 ● plugin_suite - One of the main folders, holds the implementation for all of the plugins
 ○ gailbot

 ■ __init__.py - Imports the necessary files
 ■ method.py - Contains the GBPluginMethods Class, a subclass of the

 Plugin class
 ■ plugin.py - Contains the Plugin class, the superclass for the above

 ○ __init__.py - Imports the necessary files
 ○ utt.toml - A list of output results
 ○ gb_hilab_suite

 ■ src
 ● analysis

 ○ __init__.py - Imports the necessary files
 ○ gaps.py - contains the GapPlugin class
 ○ overlaps.py - contains the OverlapPlugin class
 ○ pauses.py - contains the PausePlugin class
 ○ syllable_rate.py - contains the SyllableRatePlugin class

 ● configs
 ○ __init__.py - Initializes the config and import formats
 ○ config.py - contains a variety of classes, each initializing

 the text configuration for said class. These are
 INTERNAL_MARKER , THRESHOLD , LABEL ,
 ALL_LABELS , PLUGIN_NAME , and OUTPUT_FILE

 ○ configData.toml - contains init data
 ○ formatter.py - contains a variety of classes, each

 initializing the text configuration for said class. These are
 MARKER_FORMATTER , CHAT_FORMATTER ,
 CON_FORMATTER , and CSV_FORMATTER

 ○ xml.py - contains a variety of classes, each initializing the
 text configuration for said class. These are XML ,
 ATT_NAME , ATT_VALUE , TAG , COMMENTS , and
 UTT

 ● core - the core of the plugin suite
 ○ __init__.py - Imports the necessary dependencies
 ○ conversation_map.py - contains the

 ConversationMapPlugin class
 ○ conversation_model.py - contains the

 CONVERSATION, ConversationModel and
 ConversationModelPlugin classes, the second of which is
 a wrapper for the iterator classes map_iterator and
 tree_iterator .

 ■ CONVERSATION initializes the variable names
 for map1, map2, and map3 to the name of the
 variable

 ○ nodes.py - Contains the classes Word and Node

 15

 ○ speaker_map.py - Contains the class SpeakerMapPlugin
 ○ utterance_map.py - Contains the UtteranceMapPlugin

 class
 ○ word_tree.py - Contains the class WordTreePlugin

 ● format - Formatting for the exported files
 ○ __init__.py - initialization for the names of the plugin

 dependencies
 ○ chat.py - contains the ChatPlugin class
 ○ csv.py - contains the CSVPlugin class
 ○ text.py - contains the TextPlugin class
 ○ xml.py - contains the XMLPlugin class, as well as

 importing a variety of suite configurations
 ● __init__.py - initialize the needed dependencies for the

 gb_hilab_suite
 ■ __init__.py - initialize the needed dependencies for the gb_hilab_suite
 ■ CHANGELOG.md - Empty. Presumably, holds the changelog
 ■ config.toml - Holds the configuration for the HILab suite and its plugins
 ■ DOCUMENT.md - An older version of TECH_DOCUMENT.md
 ■ format.md - empty
 ■ README.md - An older version of TECH_DOCUMENT.md
 ■ TECH_DOCUMENT.md - An overview of the default Gailbot plugin

 ○ tests - A folder in which all of the tests are defined
 ■ analysis - A folder in which all of the analysis tests are defined
 ■ core - Mostly empty
 ■ format - Also empty
 ■ __init__.py - Imports the necessary dependencies
 ■ test_config.py - tests the configuration
 ■ test_plugin_suite - tests the plugin suites

 3. 2 Driver Files

 (interface/gui/controller/util/io.py)
 File name: io.py
 Purpose:
 Interface:

 - Paths_in_dir
 - Determine the paths of all files in the directory

 - Get_name
 - Given the path return the name of file or dir without extension

 - Is_file
 - Determine if the given path is a file

 16

 - Is_path
 - Determines whether a string given as a string is a path or a directory

 - Is_directory
 - Determine if the given path is a directory

 - Copy
 - Copy the file from the source path to the target path

 - Delete
 - Given a path, delete the file

 (interface/gui/app.py)
 File name: app.py
 Purpose: Main driver function to run the app

 (interface/gui/gblogger/logger.py)
 File name: Logger.py
 Purpose: Contains classes and handles logging
 Interface:

 - makeLogger
 - Returns a logger that specifies the source of the log information

 (interface/gui/hooks.py)
 File name: hooks.py
 Purpose: importations to facilitate pyInstaller to collect library when packaging the application

 (interface/install/hook/hook-gailbot.py)
 File name: hook-gailbot.py
 Purpose: Imports extra data from packages for the app to run
 Interface:

 - hook
 - Adds import data from a given package

 17

 4 CLASSES

 4.1 Classes in Interface GUI
 (Interface/Gui/Controller/mvController/DataOrganizer.py)

 Class name: DataOrganizer
 Purpose: A base class. Extended by PluginOrganizer, ProfileOrganizer, and FileOrganizer to
 handle signals between the Gailbot user and databases.

 Interface:

 - Init

 - Initializes channel to connect PyQt signals to the Gailbot api

 - registerSignals

 - Functionality to connect request signals to handler functions

 - postHandler

 - Handles a request to post data in database connected to Gailbot’s api

 - deleteHandler

 - Handles a request to delete data in database connected to Gailbot’s api

 - getHandler

 - Handles a request to access data in database connected to Gailbot’s api

 - editHandler

 - Handles a request to edit data in database connected to Gailbot’s api

 - viewSourceHandler

 - Handles a request for getting a source file from a database connected to Gailbot’s
 api

 - getAllNamesHandler

 - Handles a request for getting all names from a specific category of data from a
 database connected to Gailbot’s api (ex: getting all setting profiles names in a
 database connected to Gaibot api

 (Interface/Gui/Controller/mvController/EngineOrganizer.py)

 Class name: EngineOrganizer
 Purpose: Handle GUI requests related to engine data. Provides information and handles the
 modification of settings in a profile for the preferred engine, handles interaction between source
 data and databases from the engine based on PyQt signals from the user.

 Interface:

 18

 - Init

 - Initializes instance of object which will emit signal to communicate with engine
 data

 - postHandler

 - Send a source file to the engine’s database

 - deleteHandler

 - Deletes a source file from the engine’s database

 - editHandler

 - Edits source file in engine’s database

 - getHandler

 - Stores what engine is being used

 - viewSourceHandler

 - Gets a path to the source file in the specified engine

 - getAllNamesHandler

 - Gets a list of engines available for use

 (Interface/Gui/Controller/mvController/FileOrganizer.py)

 Class name: FileOrganizer
 Purpose: Handles GUI requests related to file data. Manages files within a local temporary
 database, and their interactions with the settings profile associated with them using PyQt signals
 from the user.

 Interface:

 - Init

 - Initializes instance of object which will emit signal to communicate with file data
 using DataOrganizer

 - registerSignals

 - Connects signals to the handler functions

 - postHandler

 - Adds a file to the file database

 - deleteHandler

 - Removes a file from the file database

 - editFileProfile

 - Changes the profile information of the file

 - requestProfile

 19

 - request to the view settings of the file on the database

 - viewOutput

 - Prints the view output for the given file

 (Interface/Gui/Controller/mvController/PluginOrganizer.py)

 Class name: PluginOrganizer
 Purpose: Handles GUI requests related to plugin data. Creates a database to store all plugin data.
 Manages plugins within this database using PyQt signals from the user..

 Interface:

 - Init

 - Creates an instance of the DataSignal object which will request plugin related data

 - postHandler

 - Adds a new plugin to the database

 - editHandler

 - Not yet implemented. Should allow one to edit a plugin suite

 - deleteHandler

 - Deletes an existing plugin from the database

 - getHandler

 - Gets the details of a given plugin

 - viewSourceHandler

 - Handles the request to view plugin suite source code

 - getAllNamesHandler

 - Creates a list with all of the available plugin suites names

 (Interface/Gui/Controller/mvController/ProfileOrganizer.py)

 Class name: ProfileOrganizer
 Purpose: Handles GUI requests related to profile data. Creates a database to store all profile data.
 Manages profiles within this database using PyQt signals from the user..

 Interface:

 - Init

 - Creates an instance of the DataSignal object which will request related profile
 data

 - postHandler

 20

 - Adds a new profile to the database

 - deleteHandler

 - Deletes an existing profile from the database

 - editHandler

 - Allows you to edit an existing profile

 - getHandler

 - Gets the details of a given profile

 - viewSourceHandler

 - Handles the request to view

 - getAllNamesHandler

 - Creates a list with all of the available profile names

 (Interface/Gui/Controller/mvController/mvController.py)

 Class name: MVController
 Purpose: Wraps FileOrganizer, PluginOrganizer, ProfileOrganizer and EngineOrganizer to create
 a frontend interface that can handle user preferences and inputs, and connect them with the
 backend

 Interface:

 - Init

 - Initializes settings

 - Exec

 - Runs the frontend interface and stores the data from user signals in databases
 related to files and preferences for plugins, profile, and engines

 (interface/gui/controller/transcribeController/TranscribeController.py)

 Class name: QSignal
 Purpose: Creates a signal object to communicate the transcription process with the front end
 view object

 Interface:

 - Init

 (interface/gui/controller/transcribeController/TranscribeController.py)

 Class name: TranscribeController
 Purpose: A controller that controls the transcription process

 21

 Interface:

 - Init

 - Initializes the needed variables for the transcription. Connects to the view handler,
 clears the source memory, and runs the view handler to show the transcription
 status and field

 - runGailBot

 - Calls Gailbot. Function to run Gailbot itself is elsewhere

 (interface/gui/controller/transcribeController/TranscribeController.py)

 Class name: GBWorker
 Purpose: A process that runs alongside Gailbot to display progress messages and store the file
 data

 Interface:

 - Init

 - Initializes the needed variables for GBWorker, including where to store file data.

 - run

 - Starts to transcribe the files. Prints messages to update the user on the
 transcription process

 - getProgressDisplayer

 - Private function used by run to emit file progress

 (interface/gui/controller/util/error.py)

 Class name: ERR
 Purpose: Structures error formats for file organizer, profile organizer, plugin organizer, and
 transcription

 (interface/gui/controller/Controller.py)

 Class name: Signal(QObject)
 Purpose: handles a signal object that contains signal for communication between backend
 transcription process and frontend view object

 (interface/gui/controller/Controller.py)

 Class name: Controller
 Purpose: The controller for the Gailbot GUI

 22

 Interface:

 - Init

 - Initializes the Gailbot workspace, creates the logger, and initializes the application

 - initApp

 - Initializes Gailbot, the view object, the model view controller, the thread, and the
 transcribe controller

 - run

 - A public function which runs the GUI app

 - clearCache

 - Clears the cache of the Gailbot workspace. Will delete the entire Gailbot folder
 stored on the User’s disk

 - restart

 - Sends a signal to restart the application. Involves relaunching the application

 - handleViewSignal

 - Handles signals to change the interface content from the view object

 - handleTranscribeSignal

 - Handles the signal from View that requests to transcribe the file

 - _runGailBot

 - Runs Gailbot on a separate thread

 - _clearLog

 - Clears the log that has expired

 (Interface/gui/gailbot/configs/confs/paths.py)

 Class name: ConfigPaths
 Purpose: inherits dataclass from dictionary and loads paths to engine configuration files

 (interface/gui/gailbot/configs/interfaces/config/ws_config.py)

 Class name: WorkSpaceConfig
 Purpose: configures a class for WorkSpaces, defines OutputFolder, TemporaryFolder, and
 FileExtensions subclasses, and allows functions to get a temporary workspace directory (with
 full paths of every subdirectory), get output workspace directory (with full paths of every
 subdirectory), and get output structure that returns the output folder

 Interface:

 - Init

 23

 - Get_temp_space

 - Get_output_space

 - Get_output_structure

 (interface/gui/gailbot/configs/interfaces/core/engines/google.py)

 Class name: GoogleConfig
 Purpose: loads data from the Google STT configuration to a dataclass from dictionary

 Interface:

 - load_google_config

 (interface/gui/gailbot/configs/interfaces/core/engines/watson.py)

 Class name: WatsonConfig
 Purpose: loads data from the Watson engine configuration to a dataclass from dictionary

 Interface:

 - load_watson_config

 (interface/gui/gailbot/configs/interfaces/core/engines/whisper.py)

 Class name: WhisperConfig
 Purpose: loads data from the Whisper engine configuration for both transcription and diarization
 using subclasses WhisperTranscribeConfig and WhisperDiarizationConfig

 Interface

 - load_whisper_config

 (interface/gui/gailbot/configs/interfaces/core/setting/defaults.py)

 Class name: Default
 Purpose: initializes and loads data from the default plugin and engine configurations; contains
 subclasses PluginDefault and EngineDefault

 Interface

 - load_default_config

 (interface/gui/gailbot/configs/interfaces/core/util/logger.py)

 Class name: Logger
 Purpose: loads Log configurations to dataclass from dictionary

 24

 Interface:

 - Load_log_config

 (interface/gui/gailbot/configs/interfaces/plugin/pluginsuite.py)

 Class name: PLUGIN_CONFIG
 Purpose: initializes plugin configuration

 (interface/gui/gailbot/configs/interfaces/services/service.py)

 Class name:

 (interface/gui/gailbot/core/engines/google/core.py)

 Class name: GoogleCore
 Purpose: implement core functionalities to transcribe an audio file through google STT engine.

 Interface:

 - Init: initialize instance of Google engine

 - Is_valid_google_api: checks if given google api key is valid; returns google client if
 given api key is valid, return false otherwise

 - Supported_formats: returns a list of supported formats for access

 - Is_file_supported: checks if given file is supported by checking the extension

 - Transcribe: transcribes provided audio stream using websocket connections. Produce
 outputs (list of dictionary that contains utterance data of the audio source file to output
 directory

 - _run_engine: runs the Google STT engine to transcribe file and returns the response from
 google STT

 - _prepare_utterance: converts response from Google STT to

 - _init_status: initialize statuses for connectivity, transcription, etc to false

 - _transcribe_list_file: transcribe a list of audios (list of path to audio source workspace)
 and return the utterance result represented by list of dictionaries

 - _get_chunk_duration: calculate expected chunk duration sent to google cloud when given
 file path

 (interface/gui/gailbot/core/engines/google/google.py)

 Class name: Google
 Purpose: inherits from Engine class and creates and engine that connects to the Google cloud
 STT, and provide functions to transcribe audio input file

 25

 Interface:

 - Init: initialize Google Engine using GoogleCore with given google api key

 - Repr: returns a printable representational string of Google Engine

 - Supported_formats: list of supported format that can be transcribed using the STT engine

 - Transcribe: use Google Engine to transcribe audio file

 - Is_file_supported: given path, return true if format supported by Google Engine

 - Get_supported_formats: gets list of supported format for STT engine transcription

 - Get_engine_name: gets name of Engine

 - Was_transcription_sucessful: returns boolean

 - Is_valid_google_api: checks using is_valid_google_api from GoogleCore

 (interface/gui/gailbot/core/engines/watson/am.py)

 Class name: WatsonAMInterface
 Purpose: Class used to interact with the IBM Watson STT service and provide methods to
 interact with acoustic models

 Interface:

 - Init ()

 - Initializes class with api key, Watson configuration settings, and checks if the
 provided api key is valid and if connection to the STT service is successful

 - Get_custom_model ()

 - Obtains information about a specific custom acoustic model;

 - Get_custom_modes ()

 - Obtains all custom acoustic models in the form of a dictionary

 - Create_custom model ()

 - Creates a new custom acoustic model using a supported base model

 - Delete_custom_model

 - Deletes an existing custom acoustic model

 - Train_custom_model ()

 - Train a custom acoustic model with a previously added resource and returns true
 if successful, false otherwise

 - Reset_custom_model ()

 - Reset a custom acoustic model to remove all loaded resources

 - Upgrade_custom_model ()

 26

 - Upgrade base model of a custom acoustic model to its latest version

 - Get_custom_audio_resources ()

 - List information about all audio resources of a specified custom acoustic model

 - Get_custom_audio_resource ()

 - Obtains a specific audio resource of a specified custom acoustic model

 - Add_custom_audio_resource ()

 - Adds an audio resource to a specified custom acoustic model

 - Delete_custom_audio_resource ()

 - Deletes a specific audio resource from a specific custom acoustic model

 - Is_api_key_valid ()

 - Checks if given api key is valid

 - _initialize_stt_service ()

 - returns an initialized stt service

 - _execute_watson_method ()

 - Execute a Watson method if connected to Watson STT service

 (interface/gui/gailbot/core/engines/watson/codes.py)

 Class name: WatsonResourceCode
 Purpose: return message codes from Watson STT service

 (interface/gui/gailbot/core/engines/watson/core.py)

 Class name: WatsonCore
 Purpose: provide core functionalities for audio transcription using the Watson STT service

 Interface:

 - Init ()

 - Initialize instance of WatsonCore by checking api validity and providing Watson
 configuration settings

 - Valid_region_api ()

 - Checks if given api key is a valid api key under given region

 - Supported_formats ()

 - Returns a list of supported file formats by WatsonCore

 - Regions ()

 - Access the regions of an instance of a WatsonCore

 27

 - Defaults ()

 - Access the default configurations of an instance of WatsonCore

 - Is_file_supported ()

 - Determines if a given file is supported by the instance of WatsonCore

 - Transcribe ()

 - Transcribes provided audio stream using a websocket connection, specified base
 language model, custom acoustic model, custom language model, and outputs
 result to given output directory

 - _websockets_recognize()

 - _prepare_utterance()

 - _is_api_valid()

 - _initialize_stt_service()

 - _convert_to_opus ()

 (interface/gui/gailbot/core/engines/watson/lm.py)

 Class name: WatsonLMInterface
 Purpose: interface for interaction with Watson STT service and provide methods to interact with
 language models

 Interface:

 - init()

 - Initialize instance of WatsonLMInterface with api key, and watson configuration
 settings

 - get_base_model()

 - Obtain information regarding given base language model

 - get_base_models()

 - Returns list of names of base language models that are supported

 - get_custom_model()

 - Returns information regarding a custom language model

 - get_custom_models()

 - Returns all custom language models

 - create_custom_model()

 - Creates a new custom language model; does not create model if one with same
 name already exists; returns bool value

 - delete_custom_model()

 28

 - Delete an existing custom language model

 - train_custom_model()

 - Train a custom language model with a previously added resource

 - reset_custom_model()

 - Resets a custom language model to remove all loaded resources

 - upgrade_custom_model()

 - Upgrade base model of the custom language model to its latest version

 - get_corpora()

 - Obtain the corpora used to train given custom language model

 - add_corpus()

 - Adds a corpus to the specified language model

 - delete_coporus()

 - Removes a corpus from a custom language model

 - get_corpus()

 - Returns information about a specific custom corpus used to train the given custom
 language model

 - get_custom_works()

 - Returns all the custom words used to train a custom language model

 - add_custom_works()

 - Add one or more custom words to the specified custom language model

 - delete_custom_words()

 - Remove a custom word used for training from a custom language model

 - get_custom_grammars()

 - Returns a list of grammars of a custom language model

 - get_custom_grammar()

 - Returns information about a specific grammar in a custom language model

 - Add_custom_grammar ()

 - Adds a grammar to the custom language model

 - delete_custom_grammar()

 - Removes a specific grammar from the custom language model

 - _execute_watson_method()

 - _is_api_key_valid()

 - _initialize_stt_service()

 29

 (interface/gui/gailbot/core/engines/watson/recognition_results.py)

 Classname: RecognitionResult
 Purpose: a main class that models an entire RecognitionResult object that is returned from IBM
 Watson STT service. Includes other classes such as Alternative (which models the smallest unit
 of a transcription result), SpeakerLabel (which models a SpeakerLabel data item returned from
 IBM Watson STT service), Result (which models a ‘result’ object that is returned from IBM STT
 Service)

 Interface:

 - Init()

 - Initializes an instance of RecognitionResult object per IBM Watson STT
 documentation

 - Is_configured()

 - Returns whether data is successfully parsed

 - Get_result_index()

 - Returns result index returned by Watson STT service

 - Num_speaker_labels()

 - Returns the number of SpeakerLabel objects received by Watson STT service;
 note that this is not related to the number of speakers detected by the STT service

 - Num_result()

 - Returns the number of individual results obtained by STT service

 - get_speaker_labels()

 - Returns a list of dictionaries that model SpeakerLabel objects

 - get_keywords_results()

 - Returns a list of ‘keyword_result’ objects received from the IBM

 - get_word_alternatives()

 - Returns a list of ‘word_alternative’ objects received from the STT service

 - Get_transcript_from_alternatives()

 - Returns a list containing all ‘transcript’ items from all Alternatives received as
 part of the STT result

 - get_transcript_confidences_from_alternatives()

 - Returns a list containing all transcript_confidence objects from all Alternatives
 received as part of STT result

 - get_timestamps_from_alternatives()

 30

 - Returns list containing all ‘timestamps’ objects from all Alternatives received as
 part of the STT service

 - get_word_confidences_from_alternatives()

 - Return list containing all “word_confidence” objects from all Alternatives
 received as part of STT result

 - _parse_data()

 - _aggregate()

 (interface/gui/gailbot/core/engines/watson/recognize_callback.py)

 Class name: CustomWatsonCallbacks
 Purpose: inherits and extends Watson Callback class to allow custom callbacks to be executed
 when an event occurs through the lifecycle of websocket connection. Includes other classes such
 as WatsonException

 Interface:

 - Init()

 - Initialize closure to user object that is passed as the first parameter of every
 callback during the lifecycle of the websocket connection

 - Reset()

 - Resets recognize callback

 - get_results()

 - Deep copies result

 - on_transcription()

 - Messages called after the service returns the final result for the transcription

 - on_connected()

 - Messages called when Websocket connection is made

 - on_error()

 - Messages called when there is an error in the websocket connection

 - on_inactivity_timeout()

 - Messages called when there is an inactivity timeout

 - on_listening()

 - Messages called when the service is listening for audio

 - on_hypothesis()

 - Messages called when an interim result is received

 - on_data()

 31

 - Messages called when the service returns results. Data returned unparsed

 - on_close()

 - Messages called when websocket connection is closed

 - _init_closure()

 (interface/gui/gailbot/core/engines/watson/watson.py)

 Class name: Watson
 Purpose: inherits Engine class; object for Watson engine that connects to IBM Watson STT, with
 functions to transcribe audio file with IBM Watson STT

 Interface:

 - init()

 - constructor for IBM Watson STT engine with given api key and api region

 - str()

 - Returns name of engine

 - repr()

 - Returns information on all configurations and additional metadata

 - valid_init_kwargs()

 - Calls WatsonCore’s valid_region_api with given api key and api region

 - supported_formats()

 - Returns a list of supported format that can be transcribed with the Watson STT
 engine

 - regions()

 - Returns a dictionary of the supported regions and the regions url

 - defaults()

 - Returns a dictionary that contains the default settings that will be applied to the
 IBM Watson STT engine

 - transcribe()

 - Use the Watson engine to transcribe an audio file and returns a list of dictionary
 that contains utterance data of audio file

 - language_customization_interface()

 - Returns Watson customized language model interface

 - acoustic_customization_interface()

 - Returns Watson customized acoustic model interface

 - get_engine_name()

 32

 - Returns the name of the watson engine

 - get_supported_formats()

 - Returns a list of supported formats that can be transcribed with the STT engine

 - is_file_supported()

 - Checks whether file format is supported by Watson STT engine

 - was_transcription_successful()

 - Checks whether transcription is finished and successful

 (interface/gui/gailbot/core/engines/whisperEngine/core.py)

 Class name: WhisperCore
 Purpose: adapter for the engine so that the program can use multiple different instances of the
 underlying Whisper package is required; provides functionality for an instance Whisper core

 Interface:

 - init()

 - Initializes workspace for the Whisper engine by setting workspace directories and
 loading GPU

 - repr()

 - Prints information about Whisper configuration, model name, and transcription
 configurations

 - transcribe()

 - Load whisper model, load diarization pipeline, load the audio file, transcribe, and
 return parsed result (using methods from parsers.py)

 - get_supported_formats()

 - Returns a list of supported formats

 - get_available_models()

 - Returns list of available models

 - get_supported_languages()

 - Returns list of supported languages

 (interface/gui/gailbot/core/engines/whisperEngine/whisperEngine.py)

 Class name: WhisperEngine
 Purpose: inherits engine class and extends to contain functionalities specific to the Whisper
 engine

 Interface:

 33

 - init()

 - Initialize core to WhisperCore

 - str()

 - Returns name of the engine

 - repr()

 - Returns all configurations and additional metadata

 - transcribe()

 - Uses the engine to transcribe an audio file with given audio_path, language, etc.

 - was_transcription_successful()

 - Checks whether transcription was successful with bool

 - get_engine_name()

 - Get name of current engine

 - get_supported_formats()

 - Return list of supported formats

 - is_file_supported()

 - Returns whether a given file is supported

 - get_available_models()

 - Returns list of available models

 - get_supported_languages()

 - Returns list of supported languages

 (interface/gui/gailbot/core/engines/engine.py)

 Class name: Engine
 Purpose: general Engine class with general functionalities; to be inherited by specific engines

 Interface:

 - init()

 - repr()

 - Returns all configurations and additional metadata

 - transcribe()

 - Use engine to transcribe an item

 - was_transcription_successful()

 - get_engine_name()

 - get_supported_formats()

 34

 - is_file_supported()

 (interface/gui/gailbot/core/engines/engineManager.py)

 Class name: EngineManager
 Purpose: provides wrapper functions to run available speech detect engines

 Interface:

 - available_engines()

 - Returns a list of available engines

 - is_engine()

 - Check whether a given engine is an available engine; returns bool

 - init_engine()

 - Returns an initialized engine

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: ConnectionError
 Purpose: Throws "ERROR 404: STT Connection Error"

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: TranscriptionError
 Purpose: Throws specific error with the transcription

 Interface:

 - Init

 - Initializes error

 - Str

 - Throws following message with the type of error that has been initialized:
 "ERROR 500: Transcription error: {self.error}"

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: APIKeyError
 Purpose: Throws error for API key

 Interface:

 - Init

 - Str

 35

 - Throws following message: "ERROR 508: API key error"

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: AudioFileError
 Purpose: Throws error for Audio File

 Interface:

 - Init

 - Str

 - Throws following message: "ERROR 510: Not a valid audio file"

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: ModelCreateError
 Purpose: Throws error for Model Creation

 Interface:

 - Init

 - Str

 - Throws following message: "ERROR 511: Model creation error"

 (interface/gui/gailbot/core/engines/exception.py)

 Class Name: WatsonMethodExecutionError
 Purpose: Throws error for Watson Method

 Interface:

 - Init

 - Str

 - Throws following message: "ERROR 512: Watson method execution error"

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: OutPutError
 Purpose: Throws error for Output

 Interface:

 - Init

 - Str

 - Throws following message: "ERROR 512: Watson method execution error"

 36

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: GetUttResultError
 Purpose: Throws error for getting the utterance result

 Interface:

 - Init

 - Str

 - Throws following message: "ERROR 521: Failed to get utterance result"

 (interface/gui/gailbot/core/engines/exception.py)

 Class name: ERROR
 Purpose: Throws the following errors: CONNECTION_ERROR,
 GOOGLE_TRANSCRIPTION_FAILED, WATSON_TRANSCRIPTION_FAILED,
 WHISPER_TRANSCRIPTION_FAILED, AUDIO_COMPRESSION_FAILED,
 CHILD_PROCESS_STOPPED, CHILD_PROCESS_ERROR, and
 CHILD_PROCESS_NOT_FOUND

 (interface/gui/gailbot/core/pipeline/component.py)

 Class name: ComponentState
 Purpose: class containing the status of a component object represented by ready = 0, success = 1,
 failed = 2

 (interface/gui/gailbot/core/pipeline/component.py)

 Class name: ComponentResult
 Purpose: class containing the result of a component object

 (interface/gui/gailbot/core/pipeline/component.py)

 Class name: Component
 Purpose: provide wrapper functions that are run in the pipeline; should be subclassed

 Interface:

 - init()

 - repr()

 - call()

 37

 (interface/gui/gailbot/core/pipeline/pipeline.py)

 Class name: Pipeline
 Purpose: define a class for the pipeline that runs the dependency map

 Interface:

 - init()

 - repr()

 - call()

 - Execute the pipeline by running all components in order of the dependency graph.
 This wraps data as a DataStream before passing it between components.
 Additionally, each component receives the output of its dependencies; returns
 dictionary containings keys mapping to the component states corresponding to the
 result of each task

 - component_names()

 - Get names of all components in the dependency map

 - is_comonent()

 - Checks whether a given component is an available component

 - component_parents()

 - Get the components that the given component is dependent on

 - component_children()

 - Get components that are dependent on the given component

 - get_dependency_graph()

 - Returns a map from each component to the components it is dependent on

 - _does_cycle_exist()

 - Determines if there exist cycles in a given graph

 - _generate_dependency_graph()

 - Generates a dependency map containing components from a given dictionary

 (interface/gui/gailbot/core/utils/general.py)

 Class name: CMD_STATUS
 Purpose: provide coding for statuses; 0 = running, 1 = finished, 2 = stopped, 3 = error, 4 = not
 found

 38

 (interface/gui/gailbot/core/utils/media.py)

 Class name: Stream
 Purpose: a general abstract class that defines the representation of a media string; specific type of
 stream determined by the extension of source filename given; specific media streams are
 represented by the following subclasses: AudioStream, VideoStream; functionalities for
 AudioStream and VideoStream are provided by the following subclasses: AudioHandler,
 VideoHandler; MediaHandler class abstracts AudioHandler and VideoHandler

 (interface/gui/gailbot/core/utils/threads.py)

 Class name: ThreadPool
 Purpose: inherits ThreadPoolExecutor class and provides functionality that allow running tasks
 parallel on multiple threads and interacting with specific tasks. Subclasses that support the
 functionalities include: Status, TaskNotFoundException, TaskNotFinishedException,
 TaskCancelException, TaskCreateError, ThreadError

 Interface:

 - init()

 - get_num_threads()

 - add_task()

 - Adds a given task to the task pool

 - check_task_status()

 - Returns the status of given task

 - get_tasks_with_status()

 - Returns a list of tasks that have the given status

 - get_task_result()

 - Returns the result of a given task

 - completed()

 - Determines whether a given task is completed

 - wait_for_all_completion()

 - Waits for all tasks in the thread pool to be completed by calling wait_for_task on
 all tasks in the thread pool and raises error if function cannot be properly executed

 - wait_for_task()

 - Waits for a single task

 - cancel()

 - Cancel a given task

 - cancel_all()

 39

 - Cancel all tasks

 - add_callback_with_arg()

 - Adds a function to the thread as a callback of a previous function

 - add_callback()

 - Add call back function that will run after a given task is finished

 - add_callback_on_result()

 - Adds a task to the thread after one task has finished running

 - is_busy()

 - Determines if thread queue has tasks in queue

 - count_waiting_tasks()

 - Returns number of tasks waiting in the queue

 - count_completed_tasks()

 - Returns number of completed tasks

 - count_total_tasks()

 - Returns number of total tasks

 - _task_in_pool()

 (interface/gui/gailbot/plugins/loader/directoryloader.py)

 Class name: PluginDirectoryLoader
 Purpose: Loads the plugin suite from a directory that contains all source scripts implementing the
 plugins, and a .toml file that stores config info to load the plugin

 Interface:

 - Init

 - Initializes a plugin directory loader

 - load

 - Loads the plugin from a directory

 - download_packages

 - Downloads packages listed under req_file to destination

 - validate_official

 - Given a file that stores the key, verify the key

 (interface/gui/gailbot/plugins/loader/directoryloader.py)

 Class name: PluginTOMLLoader

 40

 Purpose: Imports all modules in the plugin, as described by a .toml file

 Interface:

 - Init

 - Initializes a plugin configuration loader

 - load

 - Imports the plugin suite described by in the configuration file

 - validate_config

 - Validates if the plugin configuration file is in the correct format

 - validate_official

 - Given a file that stores the key, verify the key

 (interface/gui/gailbot/plugins/loader/directoryloader.py)

 Class name: PluginDictLoader
 Purpose: Loads a plugin suite from a dictionary that contains the configuration of all plugin
 dependencies and sources

 Interface:

 - load

 - Loads the given plugin suite

 (interface/gui/gailbot/plugins/loader/pluginLoader.py)

 Class name: PluginLoader
 Purpose: The base class for classes like PluginDictLoader and PluginDirectoryLoader

 Interface:

 - load

 - Implements the base for the other plugin classes

 (interface/gui/gailbot/plugins/loader/urlloader.py)

 Class name: UrlLoader
 Purpose: The base class for loading plugins from a url

 Interface:

 - init

 - Initializes the download directory, suite directory, and directory loaders

 - is_supported_url

 41

 - Checks if the url is supported

 - load

 - Loads the source from the url

 (interface/gui/gailbot/plugins/loader/urlloader.py)

 Class name: PluginURLLoader
 Purpose: Plugin loader to download and load the plugin suite from a url. Can recognize plugins
 from Github

 Interface:

 - init

 - Initializes the download directory

 - supported_url_source

 - Returns a list of supported url downloading sources, being Github and Amazon s2

 - is_valid_url

 - Checks if the url string is valid

 - load

 - Loads the plugin suite from the url if the url is supported

 (interface/gui/gailbot/plugins/loader/urlloader.py)

 Class name: GithubURLLoader
 Purpose: Loads a plugin from a url source, that being Github

 Interface:

 - init

 - Initializes the plugin loader

 - is_supported_url

 - given a url, returns true if the url is supported by the github loader

 - load

 - Downloads the plugin suite from a given url and stores a copy of the plugins in
 the suite directory

 (interface/gui/gailbot/plugins/loader/urlloader.py)

 Class name: S3ZipLoader
 Purpose: Loads a plugin from a url source, that being Amazon s3

 42

 Interface:

 - init

 - Initializes the plugin loader

 - is_supported_url

 - given a url, returns true if the url is supported by the github loader

 - load

 - Downloads the plugin suite from a given url and stores a copy of the plugins in
 the suite directory

 (interface/gui/gailbot/plugins/loader/urlloader.py)

 Class name: S3BucketLoader
 Purpose: Loads a plugin from a url source, that being Amazon s3

 Interface:

 - init

 - Initializes the plugin loader

 - is_supported_url

 - given a url, returns true if the url is supported by the github loader

 - load

 - Downloads the plugin suite from a given url and stores a copy of the plugins in
 the suite directory

 (interface/gui/gailbot/plugins/manager.py)

 Class name: PluginManager
 Purpose: Manages multiple plugin suites that can be registered. Stores the plugin files, parses
 them, and instantiates plugin objects from the files

 Interface:

 - Init

 - Initializes the path to the plugin workspace, the plugin sources, the existing load,
 and whether one should overwrite or not

 - get_all_suites_name

 - Returns a list of available plugin suite names

 - is_suite

 - Checks if the suite name is an available plugin suite

 - reset_workspace

 43

 - Resets all the plugins that currently exist. Permanently deletes them all

 - register_suite

 - Registers a plugin suite from a given source

 - get_suite

 - Given a suite name, returns the plugin suite objects

 - is_official_suite

 - Checks if a suite exists

 - get_suite_metadata

 - Returns the metadata from a suite if it exists

 - get_suite_dependency_graph

 - Returns the dependency graph of a suite if it exists

 - get_suite_documentation_path

 - Returns the documentation path of a suite if it exists

 - _init_workspace

 - Initializes the workspace and loads plugins from specified sources

 - delete_suite

 - Given a suite name, deletes the plugin suite

 - get_suite_path

 - Given the name of a suite, returns the internal suite path used by the suite
 manager

 - report_registration_err

 - Reports a plugin registration error

 - validate_plugin_structure

 - Validates the structure of the inputted plugin

 -

 (interface/gui/gailbot/plugins/plugin.py)

 Class name: Plugin
 Purpose: The template superclass for any plugin

 Interface:

 - init

 - Initializes the name of a plugin and whether it was successful or not

 - is_successful

 44

 - Returns successful

 - apply

 - Wrapper for the plugin algorithm with argos

 - __repr__

 - Returns the name of the plugun

 (interface/gui/gailbot/plugins/suite.py)

 Class name: PluginComponent
 Purpose: This is an adapter class, as Plugin expects different arguments as compared to pipeline
 components

 Interface:

 - Init

 - Given a plugin, wraps it to a component class so that it can be executed by the
 pipeline

 - __repr__

 - Returns the string of the plugin name

 - __call__

 - Calls the plugin itself

 (interface/gui/gailbot/plugins/suite.py)

 Class name: PluginSuite
 Purpose: Manages a suite of plugins and is responsible for loading, queries, and execution

 Interface:

 - Init

 - Creates a dictionary of the dependency map to pipeline arguments

 - name

 - Returns the name of the suite

 - is_ready

 - Returns whether the suite is ready to be run

 - set_to_official_suite

 - Sets the plugin to the official plugin

 - __repr__

 45

 - Returns the plugin’s dependency graph

 - __str__

 - Duplicate of the above function

 - __call__

 - Applies the specified plugins when possible and returns the results summary

 - is_plugin

 - Given a name, returns true if the plugin is in the plugin suite

 - plugin_names

 - Gets names of all of the plugins

 - plugin_details

 - Returns the dependency map for the plugin

 - dependency_graph

 - Returns the entire dependency graph as a dictionary

 - get_meta_data

 - Gets the metadata about this plugin

 - load_from_config

 - A private function to load the plugin suite, the information about each plugin
 name, and its path

 (interface/gui/gailbot/services/converter/payload/audioPayload.py)

 Class name: AudioPayload
 Purpose: class for audio payload inheriting PyaLoadObject with extended functionalities to
 interact with the audio

 Interface:

 - init()

 - Initializes with audio source and workspace

 - is_supported()

 - Returns if given path has a supported file extension

 - _set_initial_status()

 - _copy_file()

 - Copies file to workspace

 - _merge_audio()

 - Merge separate audio files

 46

 - supported_format()

 - Returns a list fo supported formats

 - repr()

 - Returns “audio payload”

 - load_audio_payload()

 - Given a source object, convert it into an audio payload if the source is supported
 and returns the converted payload if the conversion is successful

 (interface/gui/gailbot/services/converter/payload/conversationDirectoryPayload.py)

 Class name: ConversationDirectoryPayload
 Purpose: class that stores a conversation directory with only audio files

 Interface:

 - init()

 - Initializes with audio source and workspace

 - supported_format()

 - Returns “directory” only since only directory is supported

 - is_supported()

 - Determines whether a given file path has a supported file extension

 - _copy_file()

 - _merge_audio()

 - _set_inital_status()

 - _repr_()

 - load_conversation_dir_payload()

 - Given a source object, convert it into an conversation directory payload if the
 source stores a conversation directory and returns the converted payload if the
 conversion is successful

 (interface/gui/gailbot/services/converter/payload/payloadObject.py)

 Class name: PayLoadObject
 Purpose: super class of payloadObject, interface includes methods that interact with the payload.
 Contains source that is waiting to be processed and keeps track of the stages of the process and
 provides methods for pipeline to run functions to transcribe, analyze and format the data stored
 in payload. Includes subclass called PayLoadStatus that number codes status of the file in the
 payload

 Interface:

 47

 - init()

 - Initializes a payload object given a source object that stores the source data and a
 workspace (WorkspaceManager class) that provides functions to initialize payload
 output directory and payload temporary workspace

 - _merge_audio()

 -

 - _set_initial_status()

 - _copy_file()

 - is_supported()

 - Checks if filepath is supported

 - supported_format()

 - get_source()

 - Returns list of current sources

 - transcribed()

 - Check if payload object is transcribed

 - analyzed()

 - Check if payload object is analyzed

 - formatted()

 - Check if payload object is formatted

 - failed()

 - Check if payload object is failed

 - set_transcribed()

 - Set status of payload object to TRANSCRIBED

 - set_analyzed()

 - Set status of payload object to ANALYZED

 - set_formatted()

 - Sets status of payload object to FORMATTED

 - set_failure()

 - Set the status of the payload object to be FAILED

 - get_engine()

 - Returns the current engine setting

 - get_engine_init_setting()

 - Returns engine’s initial settings

 48

 - get_engine_transcribe_setting()

 - Returns engine’s transcription settings

 - get_plugin_setting()

 - Returns the plugin settings as a list

 - get_status()

 - Returns the payload status

 - set_transcription_result()

 - Sets transcription result to a given dictionary and returns true if successfully set

 - set_format_result()

 - Sets format result to a given dictionary

 - set_analysis_result()

 - Sets analysis result to a given directory

 - set_transcription_process_stats()

 - Sets transcription processing stats

 - set_analysis_process_stats()

 - Sets analysis processing stats

 - set_format_process_stats()

 - Sets the formal processing stats

 - get_transcription_result()

 - Returns dictionary mapping to strings to list of utterance dictionaries of current
 transcription

 - get_formal_result()

 - Access result of current formatting

 - get_analyzed_result()

 - Access result of current analysis

 - output_transcription_result()

 - Output current transcription result to output directory

 - output_meta_result()

 - Outputs current formatting result to output directory

 - output_analysis_result()

 - Outputs current analysis result to output directory

 - output_format_result()

 - Outputs current format result to the output directory

 49

 - save()

 - Saves the file and outputs all results to output directory

 - clear_temporary_workspace()

 - _repr_()

 (interface/gui/gailbot/services/converter/payload/transcribeDirPayload.py)

 Class name: TranscribeDirPayload
 Purpose: inherits PayLoadObject and provides functionality for a transcribed directory payload.
 Interface:

 - init()

 - is_supported()

 - Returns true if given file path has a supported file extension; false otherwise

 - _copy_file()

 - _set_initial_status()

 - _merge_audio()

 - supported_format()

 - Contains and access a list of the supported formats

 (interface/gui/gailbot/services/converter/payload/VideoPayload.py)

 Class name: VideoPayload
 Purpose: inherits PayLoadObject and extends functionalities for VidePayload object

 Interface

 - init()

 - Initialize with given source

 - is_supported()

 - Determines if a file path has a supported file extension

 - _copy_file()

 - Copies file to workspace

 - _set_initial_status()

 - Sets the initial status of the payload object to initialized

 - Supported_format()

 - Contains and accesses a list of supported formats

 50

 - conver_to_audio()

 - Converts video file to audio file

 - repr()

 (interface/gui/gailbot/services/converter/plugin/pluginMethod.py)

 Class name: UttObj
 Purpose: inherits BaseModel with the following members: start, end, speaker, text

 (interface/gui/gailbot/services/converter/plugin/pluginMethod.py)

 Class name: GBPluginMethods
 Purpose: a class providing methods to interact with Plugin suites

 Interface:

 - init()

 - Initializes with a PayLoadObject and a given plugin suite

 - Get_audio_path()

 - Returns a dictionary that maps the audio name to the audio source

 - merged_media()

 - Returns the path to the merged media file

 - filenames()

 - Returns the list of data file name

 - utterances()

 - Returns utterance data stored as a dictionary that maps audio name to the
 transcription result (dictionary)

 - temp_work_path()

 - Accesses and returns temporary workspace path,

 - output_path()

 - returns string containing the output path

 - get_utterance_objects()

 - Return the utterance data as utterance object

 - save_item()

 - Function provided for the plugin to save file when given data that will be
 outputted, name of the output file, temporary folder, format, and keyword
 arguments. Returns true if the plugin is registered successfully

 51

 (interface/gui/gailbot/services/converter/result/analysis.py)

 Class name: AnalysisResultDict
 Purpose: defines a class for analysis result dictionaries containing the following members:
 plugin_suite, success, failure

 (interface/gui/gailbot/services/converter/result/analysis.py)

 Class name: AnalysisResult
 Purpose: defines a class for analysis result with methods to interact with the result

 Interface:

 - init()

 - Initializes a dictionary that maps to analysis result (dictionaries)

 - save_data()

 - Saves the result data as a dictionary mapping strings to analysis results and
 returns true if successfully saved

 - output()

 - Returns true if

 - get_data()

 - Accesses an object’s data in the form of a dictionary

 (interface/gui/gailbot/services/converter/result/format.py)

 Class name: FormatResultDict
 Purpose: defines a class that formats dictionary for processing stats

 (interface/gui/gailbot/services/converter/result/format.py)

 Class name: FormatResult
 Purpose: inherits ResultInterface class and defines a class for the format result

 Interface:

 - init()

 - Initialize data

 - save_data()

 - Saves the inputted data and returns true if the data is successfully saved

 - get_data()

 52

 - Accesses an object’s data

 - output()

 (interface/gui/gailbot/services/converter/result/processingStatus.py)

 Class name: ProcessingStats
 Purpose: defines a class to contain stats about each processing item

 (interface/gui/gailbot/services/converter/result/resultinterface.py)

 Class name: ResultInterface
 Purpose: defines a class containing the logic for transcription, format, and analysis results

 Interface:

 - init()

 - Initializes workspace, data, and processingStats

 - set_processing_stats()

 - Sets an object’s processing stats

 - output_processing_stats()

 - Outputs an object’s processing stats to the output directory

 - save_data()

 - output()

 - get_data()

 (interface/gui/gailbot/services/converter/result/transcribe.py)

 Class name: UttDict
 Purpose: Defines a class for the utterance dictionary

 (interface/gui/gailbot/services/converter/result/transcribe.py)

 Class name: UttResult
 Purpose: Defines a class containing the utterance results of a transcription

 Interface:

 - Init

 - Initializes the workspace, the size, the data, the filenames, and a boolean of
 whether the utterances have been saves

 - Initializes an object for storing the utterance data in the workspace

 53

 - Save_data

 - Saves the given data to the output directory

 - Output

 - Outputs the result to the output directory

 - Get_data

 - Accesses and returns the data of the current transcription result

 - Get_one_file_data

 - Accesses and return the data of one file

 - Load_result

 - Loads the transcription result

 - Read_from_dir

 - Processes the result of a directory input

 - Read_from_file

 - Processes the result of a file input

 (interface/gui/gailbot/services/converter/converter.py)

 Class name: Converter
 Purpose: Provides functionality that converts the sourceObject to payload and keeps track of the
 converted payloads

 Interface:

 - Init

 - Maps a payload name to payloadObject

 - Load_source

 - Loads a given source object with the correct loader

 - Call

 - given a list of the source files, and convert them into a list of payload objects

 (interface/gui/gailbot/services/organizer/settings/interface/engineSettingInterface.py)

 Class name: EngineSettingInterface
 Purpose: The basic engine interface

 Interface:

 - get_init_kwargs

 - Gets the setting kwargs for initializing the engine

 54

 - get_transcribe_kwargs

 - Gets the setting kwargs for the transcribe function

 (interface/gui/gailbot/services/organizer/settings/interface/googleInterface.py)

 Class name: ValidateGoogle
 Purpose: Creates the base model for Google

 (interface/gui/gailbot/services/organizer/settings/interface/googleInterface.py)

 Class name: Transcribe
 Purpose: Doesn’t do anything. Google does not support additional kwargs

 (interface/gui/gailbot/services/organizer/settings/interface/googleInterface.py)

 Class name: Init
 Purpose: Initializes the google API key

 (interface/gui/gailbot/services/organizer/settings/interface/googleInterface.py)

 Class name: GoogleInterface
 Purpose: The interface for Google’s speech to text engine

 Interface:

 - load_google_setting

 - Given a dictionary, loads the dictionary as a google setting

 (interface/gui/gailbot/services/organizer/settings/interface/pluginSettingsInterface.py)

 Class name: PluginSettingsInterface
 Purpose: The interface for plugin settings

 Interface:

 - init

 - Initializes the plugin settings

 - get_data

 - Accesses and returns an object’s plugin settings

 (interface/gui/gailbot/services/organizer/settings/interface/watsoninterface.py)

 Class name: ValidateWatson

 55

 Purpose: Creates the base model for Watson

 (interface/gui/gailbot/services/organizer/settings/interface/watsoninterface.py)

 Class name: InitSetting
 Purpose: Initialize the APIKey and regions for Watson

 (interface/gui/gailbot/services/organizer/settings/interface/watsoninterface.py)

 Class name: TranscribeSetting
 Purpose: Initializes the base model, language customization id, and acoustic customization id for
 a setting

 (interface/gui/gailbot/services/organizer/settings/interface/watsoninterface.py)

 Class name: WatsonInterface
 Purpose: The interface for the Watson speech to text engine

 Interface:

 - engine

 - Returns the name of the engine, being “watson”

 - load_watson_setting

 - Given a dictionary, loads the dictionary as a Watson setting

 (interface/gui/gailbot/services/organizer/settings/interface/whisperinterface.py)

 Class name: ValidateWhisper
 Purpose: Creates a class with fields for engine, language, and detect speakers

 (interface/gui/gailbot/services/organizer/settings/interface/whisperinterface.py)

 Class name: Init
 Purpose: Empty, passed through with “pass” keyword

 (interface/gui/gailbot/services/organizer/settings/interface/whisperinterface.py)

 Class name: TranscribeSetting
 Purpose: Creates a class that adds field specific to whisper for language and detect speakers

 (interface/gui/gailbot/services/organizer/settings/interface/whisperinterface.py)

 56

 Class name: WhisperInterface
 Purpose: Inherits from EngineSettingInterface, creates an interface for the Whisper speech to text
 engine

 Implementation:

 - Load_whisper_setting

 - Given a dictionary, load the dictionary as a whisper setting

 (interface/gui/gailbot/services/organizer/settings/objects/engineobject.py)

 Class name: EngineSetObj
 Purpose: Stores a single Engine setting

 Implementation:

 - Init

 - Initializing an engine

 - Get_init_kwargs

 - Gets the keyword arguments from the initialized engine

 - Get_transcribe_kwargs

 - Gets the keyword arguments for the transcription from the initialized engine

 - Get_name

 - Accesses and returns the engine object's name

 - Change_name

 - Changes the profile name to a given new name

 - Get_setting_dict

 - Accesses and returns the object's setting dict

 - Update_setting

 - Updates the settings to a given dictionary

 - Save_setting

 - Saves the settings to the output directory

 - Is_in_use

 - Returns whether an engine is already being used in the setting

 - Remove_applied_profile

 - If the passed through profile is in the setting, remove it

 - Add_applied_profile

 - Add a passed through profile to the setting

 57

 - Load_engine_setting

 - Load the engine setting

 (interface/gui/gailbot/services/organizer/settings/objects/pluginobject.py)

 Class name: PluginSuiteSetObj
 Purpose: Returns a list of plugins used

 Implementation:

 - Init

 - Sets object data to be a list of the plugins

 - Get_data

 - Returns this list of plugins

 (interface/gui/gailbot/services/organizer/settings/objects/settingobject.py)

 Class name: SettingDict
 Purpose: Expands TypedDict specifically for settings

 (interface/gui/gailbot/services/organizer/settings/objects/settingobject.py)

 Class name: SettingObject
 Purpose: Store a single setting item

 Implementation:

 - Init

 - Creates instance of a single settings item

 - Change_profile_name

 - Changes the profile name to a given new name

 - Get_plugin_setting

 - Accesses and returns the object's plugin settings

 - Get_data

 - Accesses and returns the object's setting dict

 - Save_setting

 - Saves the settings to the output directory

 - Update_setting

 - Updates the settings to a given dictionary

 58

 (interface/gui/gailbot/services/organizer/settings/settingmanager.py)

 Class name: ExistingSettingName
 Purpose: Throws an exception if a setting is added that already exists

 Interface:

 - Init

 - Str

 - Exception message

 (interface/gui/gailbot/services/organizer/settings/settingmanager.py)

 Class name: SettingManager
 Purpose: Manages all available settings

 Interface:

 - Init

 - Constructs the settings manager

 - Load_set_from_file

 - load the setting from local file

 - Get_engine_setting_names

 - Return a list of available engine setting name

 - Add_new_engine

 - Add a new engine setting

 - Remove_engine_setting

 - Removes the engine setting

 - Is_engine_setting_in_use

 - Check if the given setting is engine setting

 - Save_engine_setting

 - Save the setting as a local file

 - Update_engine_setting

 - Update the engine setting

 - Get_engine_src_path

 - Given a engine setting name, return its path

 - Get_engine_setting_data

 - Get the setting data of the engine setting

 59

 - Get_profile_engine

 - Return the engine used in the profile identifies by profile name

 - Set_to_default_engine_setting

 - Set one setting to be the default setting

 - Get_default_engine_setting_name

 - Return the name of the default engine

 - Get_setting_names

 - Return a list of available setting names

 - Remove_setting

 - Given the setting name, remove the setting and the local setting file

 - Get_setting

 - Given the setting name, return the corresponding setting

 - Add_new_setting

 - Add a new setting

 - Is_setting

 - Tell if a setting exists in the setting manager

 - Update_setting

 - Update the setting

 - Rename_setting

 - Rename a setting

 - Save_setting

 - Save the setting as a local file

 - Get_setting_dict

 - Return the setting data as a dictionary

 - Get_profile_src_path

 - Given a setting name, return its path

 - Delete_all_settings

 - Delete all settings

 - Get_all_settings_data

 - Return a dictionary that stores all available setting data

 - Set_to_default_setting

 - Set one setting to be the default setting

 - Get_default_profile_setting_name

 60

 - Get the default setting name

 - Is_suite_in_use

 - Given a suite_name, check if this suite is used in any of the setting

 (interface/gui/gailbot/services/organizer/source/source_manager.py)

 Class name: SourceManager
 Purpose: Holds and handles all functionality for managing all sources

 Interface:

 - Init

 - Creates an object for managing a grouping of sources

 - Add_source

 - Adds a source to the source manager object

 - Remove_source

 - Removes a given source from the source manager's sources

 - Is_source

 - Determines if a given source is currently in the source manager's sources

 - Source_names

 - Obtains all source names as a list

 - Get_source

 - Gets the source associated with a given source name

 - Get_source_outdir

 - Gets the source output directory associated with a given source name

 - Get_source_setting

 - Gets the object’s source settings

 - Apply_setting_profile_to_source

 - Applies the given settings to the given source

 - Add_progress_display

 - Add function to display file progress

 - Get_sources_with_setting

 - Accesses all sources with a given settings profile

 - Get_configured_sources

 61

 - Given the a list of source name, return a list of the sourceObject that stores the
 source configured with setting

 - Is_source_configured

 - Determines if given source has been configured with settings

 - Repr

 - Returns a string message about sources

 - Is_path

 - Determines if a string is a source path

 (interface/gui/gailbot/services/organizer/source/source_object.py)

 Class name: SourceObject
 Purpose: Holds and handles all functionality for a single source object

 Interface:

 - Source_details

 - Accesses and returns the details about the given source

 - Source_path

 - Accesses the path of a source

 - Source_setting

 - Accesses the source name

 - Configured

 - Determines if a given source was configured or not

 - Apply_setting

 - Apply setting object

 - Add_progress_display

 - Add a function to the source object that will take in one string as argument

 - Repr

 - Gets a message containing source details

 (interface/gui/gailbot/services/organizer/organizer.py)

 Class name: Organizer
 Purpose: Wraps around settings, sources, and engine to handle access and modification

 Interface:

 62

 - Init

 - Includes fields from settingsmanager and sourcemanager

 - Add_source

 - Adds given source to the output directory

 - Remove_source

 - Removes given source

 - Is_source

 - Determines if given name corresponds to an existing source

 - Get_source

 - Accesses source with a given name

 - Get_source_outdir

 - Accesses source output directory with a given name

 - Get_source_setting

 - Accesses the settings of a source with a given name

 - Is_setting_applied

 - Determines if a given source has configured settings

 - Apply_setting_to_source

 - Apply setting to a source

 - Apply_setting_to_sources

 - Apply setting to a list of sources

 - Add_progress_display

 - Add a displayer function to the source to track the progress of the source in the
 pipeline

 - Create_new_setting

 - Create a new setting

 - Save_setting_profile

 - Save the setting locally on the disk

 - Rename_setting

 - Rename a setting

 - Remove_setting

 - Remove a setting

 - Update_setting

 - Updating the setting with new setting content

 63

 - Get_setting_obj

 - Get setting object that is identified by setting name

 - Get_setting_dict

 - Given a source name, return the setting content of the source in a dictionary

 - Is_setting

 - Check if a setting exists or not

 - Is_setting_in_use

 - Check if a setting is being used by any source

 - Remove_setting_from_source

 - Given a source name, remove the current setting from the source, set the setting of
 the source to default

 - Get_plugin_setting

 - Returns the plugin setting of the setting

 - Get_configured_sources

 - Given the a list of source name, return a list of the sourceObject that stores the
 source configured with setting

 - Get_engine_setting_names

 - Get a list of available engine setting names

 - Add_new_engine

 - Add a new engine setting

 - Remove_engine_setting

 - Remove the engine setting identified by name

 - Update_engine_setting

 - Update the engine setting identified by name

 - Is_engine_setting

 - Check if the given engine name is engine setting

 - Get_engine_setting_data

 - get the engine setting data

 - Is_engine_setting_in_use

 - Check if the engine setting identified by name is in use

 - Remove_all_setting

 - Remove all settings except for the default setting

 - Get_setting_names

 64

 - Return a list of available setting names

 - Get_all_settings_data

 - Return a dictionary that stores all setting data

 - Get_all_profile_names

 - Return a list of string that stores all profiles names

 - Get_default_engine_setting_name

 - Get the engine name in the default setting

 - Get_default_profile_setting_name

 - Get the profile name in the default setting

 - Set_default_setting

 - Set the default profile name to the string passed in

 - Set_default_engine

 - Set the engine in default setting to the engine name passed in

 - Is_suite_in_use

 - Given a suite_name, check if this suite is used in any of the setting

 - Get_profile_src_path

 - Get the path to the profile setting source

 - Get_engine_src_path

 - Get the path to the engine setting source

 (interface/gui/gailbot/services/components/analysiscomponent.py)

 Class name: PluginError
 Purpose: Returns a message if there’s an error with a plugin

 Interface:

 - Init

 - Repr

 - str

 (interface/gui/gailbot/services/components/analysiscomponent.py)

 Class name: AnalysisComponent
 Purpose: Responsible for running plugin after gailbot has obtained the transcription result

 Interface:

 - Init

 65

 - Repr

 - Call

 - Extracts the payloads from the dependency_output and runs the analysis

 - Analyze_payload

 - Applies plugin, applies methods corresponding to the plugin, collects the plugin
 suite result

 - Emit_progress

 - Displays a progress message

 (interface/gui/gailbot/services/components/formatcomponent.py)

 Class name: FormatComponent
 Purpose: Functionality surrounding getting source and the associated settings objects and
 transcribing it

 Interface:

 - Call

 - Gets a source and the associated settings objects and transcribes it

 - Repr

 - Returns string “Format component”

 - Emit_progess

 - Displays a progress message related to formatting the component

 (interface/gui/gailbot/services/components/progress.py)

 Class name: ProgressMessage
 Purpose: Stores fields as strings for the progress message

 (interface/gui/gailbot/services/components/transcribecomponents.py)

 Class name: InvalidEngineError
 Purpose: Throws error statement if the engine name isn’t valid

 Interface:

 - Init

 - Repr

 (interface/gui/gailbot/services/components/transcribecomponents.py)

 66

 Class name: TranscribeComponent
 Purpose: Responsible for running the transcription process. A wrapper class for managing and
 transcribing payload using engine

 Interface:

 - Init

 - Call

 - Extracts the payload objects from the dependency_output and transcribes the
 datafiles in the payload object

 - Transcribe_one_payload

 - A private function that transcribe each individual payload

 - Log_progress

 - Displays log messages

 - Transcribe_single_file

 - Transcribes a file with the given engine

 - Repr

 - Returns string "Transcription Component"

 - Display_progress

 - Outputs progress message

 - Get_progress_string

 - Creates the string for the progress message

 (interface/gui/gailbot/services/pipeline/pipeline.py)

 Class name: PipelineService
 Purpose: Handles the higher level functionality of the pipeline

 Interface:

 - Init

 - Call

 - Creates and validates a pipeline from a list of payload objects

 (interface/gui/gailbot/services/controller.py)

 Class name: ServiceController
 Purpose: Wraps around functionality handling user profiles/preferences, plugins and user source
 data

 67

 Interface:

 - Init

 - Sets field for workplace manager, organizer, converter, plugin manager, and
 pipeline service

 - Sets default settings

 - Stores the file name of transcribed file

 - Init_default_setting

 - Initializes a default settings profile with a profile and engine setting

 - Add_sources

 - Add a list of sources

 - Add_source

 - Adds one source

 - Remove_source

 - Removes a source by name

 - Is_source

 - Finds if a source with a provided name exists in the instance

 - Get_source_out_dir

 - Accesses source output directory with a given name

 - Create_new_setting

 - Create a new setting

 - Save_setting

 - Save the setting locally on the disk

 - Rename_setting

 - Rename a setting

 - Update_setting

 - Updating the setting with new setting content

 - Get_all_settings_data

 - Return all settings data in a dictionary

 - Get_all_profile_names

 - Get the names of available settings

 - Get_src_setting_name

 - Given a source, return its setting name

 - Get_plugin_setting

 68

 - Returns the plugin setting of the setting

 - Get_setting_dict

 - Given a setting name, return the setting content in a dictionary

 - Get_source_setting_dict

 - Given a source name, return the setting content of the source in a dictionary

 - Remove_setting

 - Remove a setting

 - Is_setting

 - Check if a setting exists or not

 - Get_default_engine_setting_name

 - Accesses an object's default setting name

 - Set_default_setting

 - Updates an object's default setting to the given setting name

 - Apply_setting_to_sources

 - Apply setting to a list of sources

 - Apply_setting_to_source

 - Apply setting to a source

 - Is_setting_in_use

 - Check if a setting is being used by any source

 - Add_progress_display

 - Add a displayer function to the source to track the progress of the source in the
 pipeline

 - Transcribe

 - Return a list of files that could not be transcribed, and the transcription result of
 the rest of the files

 - Clear_source_memory

 - Registers a plugin suite to the object's plugin manager

 - Get_plugin_suite

 - Accesses the plugin suite object associated with a given name

 - Get_all_plugin_suites

 - Get names of available plugin suites

 - Is_plugin_suite

 69

 - Determines if a given name is associated with a plugin suite object in the plugin
 manager

 - Delete_plugin_suite

 - Deletes the plugin suite with the given name from the object's plugin manager

 - Get_plugin_suite_metadata

 - Get the metadata of a plugin suite identified by suite name

 - Get_plugin_suite_dependency_graph

 - Get the dependency map of the plugin suite identified by suite_name

 - Get_plugin_suite_documentation_path

 - Get the path to the documentation map of the plugin suite identified by
 suite_name

 - Is_suite_in_use

 - Given a suite_name, check if this suite is used in any of the settings

 - Is_official_suite

 - Given a suite_name, check if the suite identified by the suite_name is official

 - Get_suite_path

 - Get the path to the source code of the plugin suite identified by suite name

 - Get_engine_setting_names

 - Get a list of available engine setting names

 - Add_new_engine

 - Add a new engine setting

 - Remove_engine_setting

 - Remove the engine setting identified by name

 - Update_engine_setting

 - Update the engine setting identified by name

 - Get_engine_setting_data

 - Get the engine setting data

 - Is_engine_setting_in_use

 - Check if the engine setting identified by name is in use

 - Is_engine_setting

 - Check if the given engine name is engine setting

 - Get_profile_src_path

 - Get the path to the profile setting source

 70

 - Get_engine_src_path

 - Get the path to the engine setting source

 (interface/gui/gailbot/workspace/manager.py)

 Class name: WorkspaceManager
 Purpose: Store the path data of the workspace, provide utility function to create temporary and
 output directories

 Interface:

 - Init

 - Creates an instance of the WorkspaceManager class when a source path is
 provided

 - Init_workspace

 - Initializes the workspace given an instance of WorkspaceManager

 - Reset_workspace

 - Deletes contents of the workspace

 - Get_file_temp_space

 - Given the file name, create a directory for the file to store temporary files created
 during the transcription process

 - Get_output_space

 - Given the file name, and the root path of the output, create a directory for the file
 to store output files

 - Clear_temp_space

 - Clear the temporary space of a certain file

 - Clear_gb_temp_dir

 - Clears the temporary workspace directory

 - Get_setting_file

 - Get the list of paths to the saved setting files

 (interface/gui/gailbot/api.py)

 Class name: Gailbot
 Purpose: Defines a wrapper for the API

 Interface:

 - Init

 71

 - Initializes an gailbot object that provides a suite of functions to interact with
 Gailbot

 - Init_workspace

 - Resets the workspace by clearing the old workspace and initializing a new one

 - Transcribe

 - Given a list of the source names, transcribes the sources

 - Clear_source_memory

 - Clears the list of source names

 - Add_sources

 - Adds a given list of sources to the stored list of sources

 - Add_source

 - Adds one source to the stored list of sources

 - Remove_source

 - Removes a source from the stored list of sources

 - Get_source_outdir

 - Given a source name, gets the output path

 - Create_new_setting

 - Creates a new setting profile

 - Get_src_setting_name

 - Given a source name, return the setting name applied to the source

 - Save_setting

 - Saves the given setting

 - Get_source_setting_dict

 - Given a setting name, returns the setting content in a dictionary

 - Get_setting_dict

 - Given a setting name, returns the setting content in a dictionary

 - Get_all_settings_data

 - Given a setting name, return the setting content in a dictionary format

 - Get_all_profile_names

 - Get the names for available settings

 - Rename_setting

 - Renames a given setting to a given new name

 - Update_setting

 72

 - Updates a given setting to a newly given structure

 - Get_plugin_setting

 - Accesses the plugin setting of a given setting

 - Remove_setting

 - Removes the given setting

 - Is_setting

 - Determines if a given setting name corresponds to an existing setting

 - Apply_setting_to_source

 - Applies a given setting to a given source

 - Apply_setting_to_sources

 - Applies a given setting to a given list of sources

 - Is_setting_in_use

 - Check if a setting is being used by any source

 - Get_default_profile_setting_name

 - Get the name of current default setting

 - Set_default_setting

 - Set the default setting to setting name

 - Register_plugin_suite

 - Registers a Gailbot plugin suite

 - Get_plugin_suite

 - Gets the plugin suite with a given name

 - Is_plugin_suite

 - Determines if a given plugin suite is an existing plugin suite

 - Delete_plugin_suite

 - Removes the given plugin suite

 - Add_progress_display

 - Add a function displayer to track for the progress of source

 - Get_all_plugin_suites

 - get names of available plugin suites

 - Get_plugin_suite_metadata

 - Get the metadata of a plugin suite identified by suite name

 - Get_plugin_suite_dependency_graph

 - Get the dependency map of the plugin suite identified by suite_name

 73

 - Get_plugin_suite_documentation_path

 - Get the path to the documentation map of the plugin suite identified by
 suite_name

 - Is_suite_in_use

 - Given a suite name, check if this plugin suite is used in any of the settings

 - Is_official_suite

 - Given a suite_name, check if the suite identified by the suite_name is official

 - Reset_workspace

 - Reset the gailbot workspace

 - Get_suite_source_path

 - Given the name of the suite, return the path to the source code of the suite

 - Get_engine_setting_names

 - Get a list of available engine settings names

 - Add_new_engine

 - Add a new engine setting

 - Remove_engine_setting

 - Remove the engine setting identified by name

 - Update_engine_setting

 - Update the engine setting identified by name

 - Get_engine_setting_data

 - Get the engine setting data

 - Is_engine_setting_in_use

 - Check if the engine setting identified by name is in use

 - Is_engine_setting

 - Check if the given engine name is engine setting

 - Get_profile_src_path

 - Get the path to the profile setting source

 - Get_engine_src_path

 - Get the path to the engine setting source

 (interface/gui/gblogger/logger.py)

 Class name: CustomFileFormatter
 Purpose: formatter for log file

 74

 Interface:

 - Format

 - Sets up formatting for a log file

 (interface/gui/gblogger/logger.py)

 Class name: ConsoleFormatter
 Purpose: Formatter for the console log

 Interface:

 - Init

 - Format

 - Returns a formatted logging string

 (interface/gui/gblogger/logger.py)

 Class name: StatusBarFormatter
 Purpose: Formatter for the status bar

 Interface:

 - Init

 - Format

 - Returns a status bar string

 (interface/gui/gblogger/logger.py)

 Class name: ConsoleHandler
 Purpose: Logging handler that shows the log message in a Qt console and a file

 Interface:

 - Init

 - Emit

 - Displays the log changes

 (interface/gui/gblogger/logger.py)

 Class name: StatusBarHandler
 Purpose: Logging handler that sends log message above the warning level

 Interface:

 - Init

 75

 - Emit

 - Handles the log message

 4.2 Classes in PluginSuite
 (plugin_suite/gailbot/plugins/plugin.py)
 Class name: Plugin
 Purpose: Superclass for all plugins
 Interface:

 - init
 - Creates defaults for the name of a class and its success

 - is_successful
 - Returns if the given plugin property was a success

 - apply
 - Wrapper template for each of the plugins

 (plugin_suite/gailbot/plugins/method.py)
 Class name: GBPluginMethods
 Purpose: Handles the plugins for Gailbot, including the proper formatting and paths
 Interface:

 - init
 - Initializes the formatting for utterances, those being pause, gap, and overlap.

 Gives you the option to get utterances one at a time
 - filenames

 - Returns a list of filenames for the data
 - audios

 - Returns a dictionary that maps the audio name to the audio source
 - utterances

 - Accesses and returns the utterance data
 - temp_work_path

 - Accesses and returns the temporary workspace path
 - output_path

 - Accesses and returns the output path
 - get_utterance_objects

 - Access and return the utterance data as utterance object
 - save_item

 - Saves an item with the proper formatting

 (plugin_suite/gb_hilab_suite/src/analysis/gaps.py)
 Class name: GapPlugin
 Purpose: A plugin to analyze gaps by inserting new nodes into the BST. A subclass of the Plugin
 class
 Interface:

 - init

 76

 - Initializes the gap threshold
 - apply

 - Inserts new nodes into the BST, each representing a gap

 (plugin_suite/gb_hilab_suite/src/analysis/overlaps.py)
 Class name: OverlapPlugin
 Purpose: A plugin to analyze overlaps in speech by inserting new nodes into the BST. A subclass
 of the Plugin class
 Interface:

 - init
 - Initializes the overlap threshold

 - apply
 - Inserts new nodes into the BST, each representing an overlap

 - det_overlap_positions
 - Returns the position of where the overlap markers should be inserted

 (plugin_suite/gb_hilab_suite/src/analysis/pauses.py)
 Class name: PausePlugin
 Purpose: A plugin to analyze pauses in speech by inserting new nodes into the BST. A subclass
 of the Plugin class
 Interface:

 - init
 - Initializes the class

 - apply
 - Inserts new nodes into the BST, each representing a pause

 (plugin_suite/gb_hilab_suite/src/analysis/syllable_rate.py)
 Class name: SyllableRatePlugin
 Purpose: A plugin to analyze syllable rate in speech. A subclass of the Plugin class
 Interface:

 - init
 - Initializes the marker limit threshold

 - apply
 - Calculates the syllable rate for each utterance of the conversation

 - stats
 - Creates a dictionary containing the statistics of the syllable rates

 - addDelims
 - Adds fast and slow speech delimiter markers into the tree

 - lastVowelPos
 - Calculates the position of the last vowel in a word string

 - numColons
 - Calculates the number of colons for slow speech

 (plugin_suite/gb_hilab_suite/src/analysis/config.py)
 Class name: OUTPUT_FILE
 Purpose: Details the name for the default output files

 77

 Interface:
 - load_label

 - Loads the given label from the directory
 - load_threshold

 - Loads the given threshold from the directory

 (plugin_suite/gailbot/src/core/conversation_map.py)
 Class name: ConversationMapPlugin
 Purpose: Creates a dictionary for conversation-level analysis of transcription
 Interface:

 - init
 - Initializes the dictionary

 - apply
 - Creates the dictionary, including its dependency outputs and its methods

 (plugin_suite/gailbot/src/core/conversation_model.py)
 Class Name: ConversationModel
 Purpose: a wrapper class around ConversationModel, with helper methods
 Interface:

 - getTree
 - returns either the current tree itself or its deep copy

 - getTurnMap
 - returns either the current world level dictionary or its deep copy

 - getConvDict
 - returns the current conversation level dictionary or its deep copy

 - insertToTree
 - inserts a new node into the tree

 - serachTree
 - searches for a node in the tree based on its start time

 - deleteFromTree
 - deletes a node from the tree based on its start time

 - buildUttMap
 - called to rebuild the utterance map after modifying it

 - toReplace
 - replaces the node markers in the tree with nodes

 - outer_buildUttMapWithChange
 - builds an utterance map with marker nodes substituted with the corresponding

 external format
 - getUttMap

 - returns either the utterance-level dictionary or its deep copy
 - getWordFromNode

 - returns a list of the inner Words from a list of nodes
 - getUttFromUttMap

 - gets the utterance specified by the ID
 - insertNodeToUtt

 - inserts a new node to the utterance list specified by the ID

 78

 - updateUttMap
 - updates the given map to ConversationModel

 - getSpeakerMap
 - returns either the speaker level dictionary itself or its deep copy

 (plugin_suite/gailbot/src/core/conversation_model.py)
 Class Name: map_iterator
 Purpose: an inner class which implements an iterator for the utterance map
 Interface:

 - init
 - sets the map to iterate over

 - iter
 - returns the iterator object (the dictionary)

 - hasNext
 - returns whether or not there is a next node in the list

 - next
 - iterates through all iterable items in the specified dictionary to get the next node

 - hasNextPair
 - returns whether or not there is a pair of next nodes in the list

 - nextPair
 - returns a pair of utterances from the dictionary

 - reset
 - sets the iterator back to its starting point

 (plugin_suite/gailbot/src/core/conversation_model.py)
 Class Name: tree_iterator
 Purpose: an inner class which implements an iterator of the tree
 Interface:

 - init
 - Sets the map to iterator over, with an initialized list of keys

 - Iter
 - Returns the iterator object (the dictionary) itself

 - next
 - Iterates through all iterable items in the specified dictionary

 - hasNext
 - Returns whether or not there is a next node in the list

 - hasNextPair
 - Returns whether or not there is a next pair in the list

 - nextPair
 - Returns a pair of utterances from the specified dictionary. If there is only one last

 utterance, return with an empty list
 - reset

 - Sets the iterator back to its starting point

 (plugin_suite/gailbot/src/core/conversation_model.py)

 79

 Class Name: ConversationModelPlugin
 Purpose: initializes, populates, and returns an instance of ConversationModel, which contains a
 tree and 3 maps
 Interface:

 - init
 - initializes the ConversationModel

 - apply
 - initializes, populates, and returns the ConversationModel instance

 plugin_suite/gailbot/src/core/nodes.py)
 Class Name: Word
 Purpose: an individual word of the BST. Contains the startTime, endTime, sLabel, and text
 variables. Used as a part of the Node class

 (plugin_suite/gailbot/src/core/nodes.py)
 Class Name: Node
 Purpose: Serves as a single node of the BST
 Interface:

 - init
 - initializes the value of the node itself to be a Word, as well as the left and right

 nodes to be empty
 - inorder

 - appends the text of utterances to the list of utterances
 - inorderChange

 - traverses the tree using an inorder traversal
 - insert

 - inserts a node into the BST by its unique start time
 - search

 - searches for a word based on its start time
 - deleteNode

 - deletes the key of a node and returns the new root
 - __minValueNode

 - returns the node of the BST with the minimum value
 - __str__

 - returns the string
 - __repr__

 - returns the str of itself

 (plugin_suite/gailbot/src/core/speaker_map.py)
 Class Name: SpeakerMapPlugin
 Purpose: Creates a dictionary for speaker level analysis of transcription
 Interface:

 - Init
 - initializes the class

 - apply

 80

 - creates a new speaker dictionary, iterates through all of the utterances, and adds
 any new utterances to the speaker dictionary

 (plugin_suite/gailbot/src/core/utterance_map.py)
 Class Name: UtteranceMapPlugin
 Purpose: A subclass of the Plugin superclass. Initializes, populates, and returns a word-level
 dictionary of utterances represented by Word objects
 Interface:

 - init
 - initializes the turn threshold seconds

 - apply
 - initializes, populates, a returns the word-level dictionary

 - outer_create_dict
 - a helper function. Creates an utterance dictionary given the root of a tree

 (plugin_suite/gailbot/src/core/word_tree.py)
 Class Name: WordTreePlugin
 Purpose: A subclass of the Plugin superclass. Creates a BST of nodes for word-level analysis.
 Interface:

 - init
 - initializes the plugin

 - apply
 - adds words from an utterance map to construct a balanced BST, each node

 containing a Word object corresponding to a transcribed word
 - _insert

 - a helper function, inserts a new node into the BST using the start time (in
 seconds) as an index

 - __sortedArrayToBST
 - makes the BST balanced

 - __speakerNum
 - returns the number of speakers in a file

 - _getIntLabel
 - Returns the labels for the speakers

 (plugin_suite/gailbot/format/chat.py)
 Class name: ChatPlugin
 Purpose: Prints the entire tree in a user-specified chat format
 Interface:

 - init
 - initializes the class

 - apply
 - prints the tree in the specified format

 (plugin_suite/gailbot/format/csv.py)

 81

 Class name: CSVPlugin
 Purpose: Prints the entire tree into a CSV file
 Interface:

 - init
 - initializes the class

 - apply
 - creates the dependency outputs

 - _utterance_level
 - prints the tree into a CSV file

 - _word_level
 - determines the given word level

 (plugin_suite/gailbot/format/text.py)
 Class name: TextPlugin
 Purpose: Prints the entire tree in a user specified format
 Interface:

 - init
 - initializes the class

 - apply
 - prints the entire tree in a user-specified format

 (plugin_suite/gailbot/format/xml.py)
 Class name: XMLPlugin
 Purpose: prints the entire tree into an xml file
 Interface:

 - init
 - initializes the class

 - apply
 - prints the entire tree into an xml file

 - xml_native
 - starts generating the native xml file

 5 GAILBOT API
 GailBot provides an API that allows developers to integrate the software into their own code.
 Developers may utilize an array of methods to create and modify transcription profiles and
 engines on audio files for transcription analysis. Detailed instructions on how to install and use
 the GailBot API can be found here on PyPI. A full list of methods and their documentation are
 detailed below.

https://pypi.org/project/GailBot/

 82

 5.1 Methods

 METHOD: add_source()
 DESCRIPTION: Adds a given source to the workspace.
 PARAMETERS: source_path (str) - Source path of the given source, output_dir (str) - Path to the
 output directory of the given source.

 METHOD: add_sources()
 DESCRIPTION: Adds a list of sources to the workspace.
 PARAMETERS: src_output_pairs (List[Tuple[str, str]]) - List of tuples of strings representing
 the source path and output path of sources to add.

 METHOD: is_source()
 DESCRIPTION: Determines if a given name corresponds to an existing source in the workspace.
 PARAMETERS: name (str) - Name of the source to look for.

 METHOD: get_source_outdir()
 DESCRIPTION: Accesses the source output directory with a given name in the workspace.
 PARAMETERS: name (str) - Source name to access.

 METHOD: remove_source()
 DESCRIPTION: Removes the given source from the workspace.
 PARAMETERS: source_name (str) - Name of the existing source to remove.

 METHOD: remove_sources()
 DESCRIPTION: Removes a list of sources from the workspace.
 PARAMETERS: source_names (List[str]) - Names of the existing sources to remove.

 METHOD: get_source_setting_dict()
 DESCRIPTION: Returns the setting content of a source as a dictionary.
 PARAMETERS: source_name (str) - The name of the source.

 METHOD: clear_source_memory()
 DESCRIPTION: Clears the source memory in the workspace.
 PARAMETERS: None

 METHOD: get_all_source_names()
 DESCRIPTION: Returns a list of all source names in the workspace.
 PARAMETERS: None

 METHOD: get_src_setting_name()
 DESCRIPTION: Given a source name, returns the setting name applied to the source in the
 workspace.
 PARAMETERS: source_name (str) - The name that identifies the source.

 METHOD: get_source_setting_dict()

 83

 DESCRIPTION: Given a source name, returns the setting content of the source as a dictionary.
 PARAMETERS: source_name (str) - The name of the source.

 METHOD: transcribe()
 DESCRIPTION: Transcribes a list of source files or all configured sources and returns lists of
 files that are not valid input and files that fail to be processed.
 PARAMETERS: sources (List[str], optional) - A list of source names, either a list of source paths
 or the file names of the sources without the file extension. If sources is None, transcribes all
 configured sources.

 METHOD: create_new_setting()
 DESCRIPTION: Creates a new setting profile with a given name and dictionary representation
 of the setting.
 PARAMETERS: name (str) - Name to assign to the newly created setting profile, setting
 (Dict[str, str]) - Dictionary representation of the setting, overwrite (bool) - Whether to overwrite
 if the setting already exists.

 METHOD: save_setting()
 DESCRIPTION: Saves the given setting with a specific name.
 PARAMETERS: setting_name (str) - Name of the setting to save.

 METHOD: get_setting_dict()
 DESCRIPTION: Given a setting name, returns the setting content as a dictionary.
 PARAMETERS: setting_name (str) - Name that identifies a setting.

 METHOD: get_all_settings_data()
 DESCRIPTION: Returns the content of all settings in a dictionary format.
 PARAMETERS: None

 METHOD: get_all_profile_names()
 DESCRIPTION: Returns a list of available setting names.
 PARAMETERS: None

 METHOD: rename_setting()
 DESCRIPTION: Renames a given setting to a new name.
 PARAMETERS: old_name (str) - Original name of the setting to rename, new_name (str) -
 Name to rename the setting to.

 METHOD: update_setting()
 DESCRIPTION: Updates a given setting to a newly given structure.
 PARAMETERS: setting_name (str) - Name of the setting to update, new_setting (Dict[str, str]) -
 Dictionary representation of the new structure of the setting.

 METHOD: get_plugin_setting()
 DESCRIPTION: Accesses the plugin setting of a given setting.
 PARAMETERS: setting_name (str) - Name of the setting to get the plugin setting of.

 84

 METHOD: remove_setting()
 DESCRIPTION: Removes the given setting.
 PARAMETERS: setting_name (str) - Name of the setting to remove.

 METHOD: remove_multiple_settings()
 DESCRIPTION: Removes the given list of settings.
 PARAMETERS: setting_names(List[str]) - List of names of the settings to remove.

 METHOD: is_setting()
 DESCRIPTION: Determines if a given setting name corresponds to an existing setting in the
 workspace.
 PARAMETERS: name (str) - Name of the setting to search for.

 METHOD: apply_setting_to_source()
 DESCRIPTION: Applies a given setting to a given source in the workspace.
 PARAMETERS: source (str) - Name of the source to which to apply the given setting, setting
 (str) - Name of the setting to apply to the given source, overwrite (bool) - Determines if it should
 overwrite from an existing setting. Defaults to True.

 METHOD: apply_setting_to_sources()
 DESCRIPTION: Applies a given setting to a list of sources in the workspace.
 PARAMETERS: sources (List[str]) - List of names of the sources to which to apply the given
 setting, setting (str) - Name of the setting to apply to the given sources, overwrite (bool) -
 Determines if it should overwrite from an existing setting. Defaults to True.

 METHOD: is_setting_in_use()
 DESCRIPTION: Checks if a given setting is being used by any source in the workspace.
 PARAMETERS: setting_name (str) - The name of the setting.

 METHOD: get_default_profile_setting_name()
 DESCRIPTION: Gets the name of the current default setting profile in the workspace.
 PARAMETERS: None

 METHOD: get_default_engine_setting_name()
 DESCRIPTION: Gets the name of the default engine setting in the workspace.
 PARAMETERS: None

 METHOD: set_default_setting()
 DESCRIPTION: Sets the default setting to a given setting name in the workspace.
 PARAMETERS: setting_name (str) - The name of the default setting.

 METHOD: register_plugin_suite()
 DESCRIPTION: Registers a Gailbot plugin suite in the workspace.
 PARAMETERS: plugin_source (str) - Name of the plugin suite to register.

 85

 METHOD: get_plugin_suite()
 DESCRIPTION: Gets the plugin suite with a given name in the workspace.
 PARAMETERS: suite_name (str) - Name of the given plugin suite.

 METHOD: is_plugin_suite()
 DESCRIPTION: Determines if a given plugin suite is an existing plugin suite in the workspace.
 PARAMETERS: suite_name (str) - Name of the plugin suite to determine existence.

 METHOD: delete_plugin_suite()
 DESCRIPTION: Removes the given plugin suite from the workspace.
 PARAMETERS: suite_name (str) - Name of the plugin suite to delete.

 METHOD: delete_plugin_suites()
 DESCRIPTION: Removes a list of plugin suites from the workspace.
 PARAMETERS: suite_names (List[str]) - List of names of the plugin suites to delete.

 METHOD: add_progress_display()
 DESCRIPTION: Adds a function displayer to track the progress of a source in the workspace.
 PARAMETERS: source (str) - The name of the source, displayer (Callable) - A function that
 takes a string as an argument, which encodes the progress of the source.

 METHOD: get_all_plugin_suites()
 DESCRIPTION: Gets names of available plugin suites in the workspace.
 PARAMETERS: None

 METHOD: get_plugin_suite_metadata()
 DESCRIPTION: Gets the metadata of a plugin suite identified by suite name in the workspace.
 PARAMETERS: suite_name (str) - The name of the suite.

 METHOD: get_plugin_suite_dependency_graph()
 DESCRIPTION: Gets the dependency map of the plugin suite identified by suite_name in the
 workspace.
 PARAMETERS: suite_name (str) - The name of the suite.

 METHOD: get_plugin_suite_documentation_path()
 DESCRIPTION: Gets the path to the documentation map of the plugin suite identified by
 suite_name in the workspace.
 PARAMETERS: suite_name (str) - The name of the suite.

 METHOD: is_suite_in_use()
 DESCRIPTION: Checks if a plugin suite identified by suite_name is used in any of the settings
 in the workspace.
 PARAMETERS: suite_name (str) - The name of the plugin suite.

 METHOD: is_official_suite()

 86

 DESCRIPTION: Checks if the plugin suite identified by the suite_name is official in the
 workspace.
 PARAMETERS: suite_name (str) - The name of the suite.

 METHOD: reset_workspace()
 DESCRIPTION: Resets the Gailbot workspace.
 PARAMETERS: None

 METHOD: get_suite_source_path()
 DESCRIPTION: Given the name of the suite, returns the path to the source code of the suite in
 the workspace.
 PARAMETERS: suite_name (str) - The name of the suite.

 METHOD: get_engine_setting_names()
 DESCRIPTION: Gets a list of available engine setting names in the workspace.
 PARAMETERS: None

 METHOD: add_new_engine()
 DESCRIPTION: Adds a new engine setting to the workspace.
 PARAMETERS: name (str) - The name of the engine setting, setting (Dict[str, str]) - The setting
 data stored in a dictionary, overwrite (bool, optional) - If True, overwrite the existing engine
 setting with the same name. Defaults to False.

 METHOD: remove_engine_setting()
 DESCRIPTION: Removes the engine setting identified by name from the workspace.
 PARAMETERS: name (str) - The name of the engine setting to be removed.

 METHOD: update_engine_setting()
 DESCRIPTION: Updates the engine setting identified by name in the workspace.
 PARAMETERS: name (str) - The name of the engine setting to be updated,

 setting_data (Dict[str, str]) - The content of the new setting.

 METHOD: get_engine_setting_data()
 DESCRIPTION: Gets the engine setting data identified by name in the workspace.
 PARAMETERS: name (str) - The name of the engine setting.

 METHOD: is_engine_setting_in_use()
 DESCRIPTION: Checks if the engine setting identified by name is in use in the workspace.
 PARAMETERS: name (str) - The name of the engine setting.

 METHOD: is_engine_setting()
 DESCRIPTION: Checks if the given engine name is an engine setting in the workspace.
 PARAMETERS: name (str) - The name of the engine setting.

 METHOD: get_profile_src_path()
 DESCRIPTION: Gets the path to the profile setting source identified by name in the workspace.

 87

 PARAMETERS: name (str) - The name of the profile.

 METHOD: get_engine_src_path()
 DESCRIPTION: Gets the path to the engine setting source identified by name in the workspace.
 PARAMETERS: name (str) - The name of the engine.

 5.2 Plugin Suite
 By default, GailBot uses the pre-installed plugin suite called HiLabSuite. More information on
 HiLabSuite can be found here.

